These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 8573562)

  • 1. Functional development of auditory sensitivity in the fetus and neonate.
    Sohmer H; Freeman S
    J Basic Clin Physiol Pharmacol; 1995; 6(2):95-108. PubMed ID: 8573562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The pathway enabling external sounds to reach and excite the fetal inner ear.
    Sohmer H; Perez R; Sichel JY; Priner R; Freeman S
    Audiol Neurootol; 2001; 6(3):109-16. PubMed ID: 11474136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The pathway for the transmission of external sounds into the fetal inner ear.
    Sohmer H; Freeman S
    J Basic Clin Physiol Pharmacol; 2001; 12(2 Suppl):91-9. PubMed ID: 11605684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fetal sheep in utero hear through bone conduction.
    Gerhardt KJ; Huang X; Arrington KE; Meixner K; Abrams RM; Antonelli PJ
    Am J Otolaryngol; 1996; 17(6):374-9. PubMed ID: 8944295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of hearing in neonatal rats: air and bone conducted ABR thresholds.
    Geal-Dor M; Freeman S; Li G; Sohmer H
    Hear Res; 1993 Sep; 69(1-2):236-42. PubMed ID: 8226345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Middle-ear and inner-ear contribution to bone conduction in chinchilla: The development of Carhart's notch.
    Chhan D; Bowers P; McKinnon ML; Rosowski JJ
    Hear Res; 2016 Oct; 340():144-152. PubMed ID: 26923425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High frequency bone conduction auditory evoked potentials in the guinea pig: Assessing cochlear injury after ossicular chain manipulation.
    Bergin MJ; Bird PA; Vlajkovic SM; Thorne PR
    Hear Res; 2015 Dec; 330(Pt A):147-54. PubMed ID: 26493491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spiral ligament and stria vascularis changes in cochlear otosclerosis: effect on hearing level.
    Doherty JK; Linthicum FH
    Otol Neurotol; 2004 Jul; 25(4):457-64. PubMed ID: 15241221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Positive endocochlear potential: mechanism of production by marginal cells of stria vascularis.
    Offner FF; Dallos P; Cheatham MA
    Hear Res; 1987; 29(2-3):117-24. PubMed ID: 3040655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The experimental research of inner ear metabolism and electrical physiology of autoimmune sensorineural hearing loss].
    Tan C; Cao Y; Hu P
    Lin Chuang Er Bi Yan Hou Ke Za Zhi; 1998 Sep; 12(9):407-10. PubMed ID: 11263148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compartmentalization established by claudin-11-based tight junctions in stria vascularis is required for hearing through generation of endocochlear potential.
    Kitajiri S; Miyamoto T; Mineharu A; Sonoda N; Furuse K; Hata M; Sasaki H; Mori Y; Kubota T; Ito J; Furuse M; Tsukita S
    J Cell Sci; 2004 Oct; 117(Pt 21):5087-96. PubMed ID: 15456848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Na,K-ATPase alpha- and beta-isoforms in the developing cochlea of the mouse.
    Erichsen S; Zuo J; Curtis L; Rarey K; Hultcrantz M
    Hear Res; 1996 Oct; 100(1-2):143-9. PubMed ID: 8922988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model predictions for bone conduction perception in the human.
    Stenfelt S
    Hear Res; 2016 Oct; 340():135-143. PubMed ID: 26657096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lateral wall Na,K-ATPase and endocochlear potentials decline with age in quiet-reared gerbils.
    Schulte BA; Schmiedt RA
    Hear Res; 1992 Aug; 61(1-2):35-46. PubMed ID: 1326507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of endocochlear potential and compound action potential in the rat.
    Rybak LP; Whitworth C; Scott V
    Hear Res; 1992 May; 59(2):189-94. PubMed ID: 1319988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneously reduced NKCC1 and Na,K-ATPase expression in murine cochlear lateral wall contribute to conservation of endocochlear potential following a sensorineural hearing loss.
    Xiong H; Chu H; Zhou X; Huang X; Cui Y; Zhou L; Chen J; Li J; Wang Y; Chen Q; Li Z
    Neurosci Lett; 2011 Jan; 488(2):204-9. PubMed ID: 21094218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement in sensorineural auditory threshold of the guinea-pig fetus following delivery.
    Sohmer H; Goitein K; Freeman S
    Hear Res; 1994 Feb; 73(1):116-20. PubMed ID: 8157500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Auditory behaviour and brainstem histochemistry in adult rats with characterized ear damage after neonatal ossicle ablation or cochlear disruption.
    Paterson JA; Hosea EW
    Behav Brain Res; 1993 Feb; 53(1-2):73-89. PubMed ID: 8385469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strial dysfunction in the MRL-Fas mouse.
    Ruckenstein MJ; Milburn M; Hu L
    Otolaryngol Head Neck Surg; 1999 Oct; 121(4):452-6. PubMed ID: 10504603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study of the electrochemistry and osmotic relationships of the cochlear fluids in the neonatal rat at the time of the development of the endocochlear potential.
    Bosher SK; Warren RL
    J Physiol; 1971 Feb; 212(3):739-61. PubMed ID: 5557069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.