BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 8573562)

  • 1. Functional development of auditory sensitivity in the fetus and neonate.
    Sohmer H; Freeman S
    J Basic Clin Physiol Pharmacol; 1995; 6(2):95-108. PubMed ID: 8573562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The pathway enabling external sounds to reach and excite the fetal inner ear.
    Sohmer H; Perez R; Sichel JY; Priner R; Freeman S
    Audiol Neurootol; 2001; 6(3):109-16. PubMed ID: 11474136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The pathway for the transmission of external sounds into the fetal inner ear.
    Sohmer H; Freeman S
    J Basic Clin Physiol Pharmacol; 2001; 12(2 Suppl):91-9. PubMed ID: 11605684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fetal sheep in utero hear through bone conduction.
    Gerhardt KJ; Huang X; Arrington KE; Meixner K; Abrams RM; Antonelli PJ
    Am J Otolaryngol; 1996; 17(6):374-9. PubMed ID: 8944295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of hearing in neonatal rats: air and bone conducted ABR thresholds.
    Geal-Dor M; Freeman S; Li G; Sohmer H
    Hear Res; 1993 Sep; 69(1-2):236-42. PubMed ID: 8226345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Middle-ear and inner-ear contribution to bone conduction in chinchilla: The development of Carhart's notch.
    Chhan D; Bowers P; McKinnon ML; Rosowski JJ
    Hear Res; 2016 Oct; 340():144-152. PubMed ID: 26923425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High frequency bone conduction auditory evoked potentials in the guinea pig: Assessing cochlear injury after ossicular chain manipulation.
    Bergin MJ; Bird PA; Vlajkovic SM; Thorne PR
    Hear Res; 2015 Dec; 330(Pt A):147-54. PubMed ID: 26493491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spiral ligament and stria vascularis changes in cochlear otosclerosis: effect on hearing level.
    Doherty JK; Linthicum FH
    Otol Neurotol; 2004 Jul; 25(4):457-64. PubMed ID: 15241221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Positive endocochlear potential: mechanism of production by marginal cells of stria vascularis.
    Offner FF; Dallos P; Cheatham MA
    Hear Res; 1987; 29(2-3):117-24. PubMed ID: 3040655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The experimental research of inner ear metabolism and electrical physiology of autoimmune sensorineural hearing loss].
    Tan C; Cao Y; Hu P
    Lin Chuang Er Bi Yan Hou Ke Za Zhi; 1998 Sep; 12(9):407-10. PubMed ID: 11263148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compartmentalization established by claudin-11-based tight junctions in stria vascularis is required for hearing through generation of endocochlear potential.
    Kitajiri S; Miyamoto T; Mineharu A; Sonoda N; Furuse K; Hata M; Sasaki H; Mori Y; Kubota T; Ito J; Furuse M; Tsukita S
    J Cell Sci; 2004 Oct; 117(Pt 21):5087-96. PubMed ID: 15456848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Na,K-ATPase alpha- and beta-isoforms in the developing cochlea of the mouse.
    Erichsen S; Zuo J; Curtis L; Rarey K; Hultcrantz M
    Hear Res; 1996 Oct; 100(1-2):143-9. PubMed ID: 8922988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model predictions for bone conduction perception in the human.
    Stenfelt S
    Hear Res; 2016 Oct; 340():135-143. PubMed ID: 26657096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lateral wall Na,K-ATPase and endocochlear potentials decline with age in quiet-reared gerbils.
    Schulte BA; Schmiedt RA
    Hear Res; 1992 Aug; 61(1-2):35-46. PubMed ID: 1326507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of endocochlear potential and compound action potential in the rat.
    Rybak LP; Whitworth C; Scott V
    Hear Res; 1992 May; 59(2):189-94. PubMed ID: 1319988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneously reduced NKCC1 and Na,K-ATPase expression in murine cochlear lateral wall contribute to conservation of endocochlear potential following a sensorineural hearing loss.
    Xiong H; Chu H; Zhou X; Huang X; Cui Y; Zhou L; Chen J; Li J; Wang Y; Chen Q; Li Z
    Neurosci Lett; 2011 Jan; 488(2):204-9. PubMed ID: 21094218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement in sensorineural auditory threshold of the guinea-pig fetus following delivery.
    Sohmer H; Goitein K; Freeman S
    Hear Res; 1994 Feb; 73(1):116-20. PubMed ID: 8157500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Auditory behaviour and brainstem histochemistry in adult rats with characterized ear damage after neonatal ossicle ablation or cochlear disruption.
    Paterson JA; Hosea EW
    Behav Brain Res; 1993 Feb; 53(1-2):73-89. PubMed ID: 8385469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strial dysfunction in the MRL-Fas mouse.
    Ruckenstein MJ; Milburn M; Hu L
    Otolaryngol Head Neck Surg; 1999 Oct; 121(4):452-6. PubMed ID: 10504603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study of the electrochemistry and osmotic relationships of the cochlear fluids in the neonatal rat at the time of the development of the endocochlear potential.
    Bosher SK; Warren RL
    J Physiol; 1971 Feb; 212(3):739-61. PubMed ID: 5557069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.