BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 8573565)

  • 1. Influence of GC and AT specific DNA minor groove binding drugs on intermolecular triplex formation in the human c-Ki-ras promoter.
    Vigneswaran N; Mayfield CA; Rodu B; James R; Kim HG; Miller DM
    Biochemistry; 1996 Jan; 35(4):1106-14. PubMed ID: 8573565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intra- and intermolecular triplex DNA formation in the murine c-myb proto-oncogene promoter are inhibited by mithramycin.
    Vigneswaran N; Thayaparan J; Knops J; Trent J; Potaman V; Miller DM; Zacharias W
    Biol Chem; 2001 Feb; 382(2):329-42. PubMed ID: 11308031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. (A,G)-oligonucleotides form extraordinary stable triple helices with a critical R.Y sequence of the murine c-Ki-ras promoter and inhibit transcription in transfected NIH 3T3 cells.
    Alunni-Fabbroni M; Pirulli D; Manzini G; Xodo LE
    Biochemistry; 1996 Dec; 35(50):16361-9. PubMed ID: 8973212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antiproliferative activity of a triplex-forming oligonucleotide recognizing a Ki-ras polypurine/polypyrimidine motif correlates with protein binding.
    Cogoi S; Ballico M; Bonora GM; Xodo LE
    Cancer Gene Ther; 2004 Jul; 11(7):465-76. PubMed ID: 15118760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. G-rich oligonucleotide inhibits the binding of a nuclear protein to the Ki-ras promoter and strongly reduces cell growth in human carcinoma pancreatic cells.
    Cogoi S; Quadrifoglio F; Xodo LE
    Biochemistry; 2004 Mar; 43(9):2512-23. PubMed ID: 14992588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of nuclear protein binding to the human Ki-ras promoter by triplex-forming oligonucleotides.
    Mayfield C; Squibb M; Miller D
    Biochemistry; 1994 Mar; 33(11):3358-63. PubMed ID: 8136373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel triplex-forming oligonucleotide targeted to human cyclin D1 (bcl-1, proto-oncogene) promoter inhibits transcription in HeLa cells.
    Kim HG; Miller DM
    Biochemistry; 1998 Feb; 37(8):2666-72. PubMed ID: 9485417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distamycin A complexation with a nucleic acid triple helix.
    Durand M; Maurizot JC
    Biochemistry; 1996 Jul; 35(28):9133-9. PubMed ID: 8703918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of local DNA sequence on the interaction of ligands with their preferred binding sites.
    Hampshire AJ; Fox KR
    Biochimie; 2008 Jul; 90(7):988-98. PubMed ID: 18226601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minor groove binding ligands alter the rotational positioning of DNA fragments on nucleosome core particles.
    Brown PM; Fox KR
    J Mol Biol; 1996 Oct; 262(5):671-85. PubMed ID: 8876646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Presence of divalent cation is not mandatory for the formation of intramolecular purine-motif triplex containing human c-jun protooncogene target.
    Kaushik S; Kaushik M; Svinarchuk F; Malvy C; Fermandjian S; Kukreti S
    Biochemistry; 2011 May; 50(19):4132-42. PubMed ID: 21381700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stabilization of triple helical DNA by a benzopyridoquinoxaline intercalator.
    Marchand C; Bailly C; Nguyen CH; Bisagni E; Garestier T; Hélène C; Waring MJ
    Biochemistry; 1996 Apr; 35(15):5022-32. PubMed ID: 8664295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of c-src transcription by mithramycin: structure-activity relationships of biosynthetically produced mithramycin analogues using the c-src promoter as target.
    Remsing LL; Bahadori HR; Carbone GM; McGuffie EM; Catapano CV; Rohr J
    Biochemistry; 2003 Jul; 42(27):8313-24. PubMed ID: 12846580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Berenil complexation with a nucleic acid triple helix.
    Durand M; Thuong NT; Maurizot JC
    J Biomol Struct Dyn; 1994 Jun; 11(6):1191-202. PubMed ID: 7946069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of cytosine derivatives with T.A interruptions in pyrimidine.purine.pyrimidine DNA triplexes.
    Verma S; Miller PS
    Bioconjug Chem; 1996; 7(5):600-5. PubMed ID: 8889023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional role of a conformationally flexible homopurine/homopyrimidine domain of the androgen receptor gene promoter interacting with Sp1 and a pyrimidine single strand DNA-binding protein.
    Chen S; Supakar PC; Vellanoweth RL; Song CS; Chatterjee B; Roy AK
    Mol Endocrinol; 1997 Jan; 11(1):3-15. PubMed ID: 8994183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterogeneity in the actions of drugs that bind in the DNA minor groove.
    Albert FG; Eckdahl TT; Fitzgerald DJ; Anderson JN
    Biochemistry; 1999 Aug; 38(31):10135-46. PubMed ID: 10433722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence-specific artificial photo-induced endonucleases based on triple helix-forming oligonucleotides.
    Perrouault L; Asseline U; Rivalle C; Thuong NT; Bisagni E; Giovannangeli C; Le Doan T; Hélène C
    Nature; 1990 Mar; 344(6264):358-60. PubMed ID: 2156170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution structure of the calicheamicin gamma 1I-DNA complex.
    Kumar RA; Ikemoto N; Patel DJ
    J Mol Biol; 1997 Jan; 265(2):187-201. PubMed ID: 9020982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Footprinting studies of sequence recognition by mithramycin.
    Cons BM; Fox KR
    Anticancer Drug Des; 1990 Feb; 5(1):93-7. PubMed ID: 2156518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.