These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 8573575)

  • 21. Replacement of the conserved G.U with a G-C pair at the cleavage site of the Tetrahymena ribozyme decreases binding, reactivity, and fidelity.
    Pyle AM; Moran S; Strobel SA; Chapman T; Turner DH; Cech TR
    Biochemistry; 1994 Nov; 33(46):13856-63. PubMed ID: 7947794
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 1. Kinetic description of the reaction of an RNA substrate complementary to the active site.
    Herschlag D; Cech TR
    Biochemistry; 1990 Nov; 29(44):10159-71. PubMed ID: 2271645
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure and thermodynamics of metal binding in the P5 helix of a group I intron ribozyme.
    Colmenarejo G; Tinoco I
    J Mol Biol; 1999 Jul; 290(1):119-35. PubMed ID: 10388561
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mutations at the guanosine-binding site of the Tetrahymena ribozyme also affect site-specific hydrolysis.
    Legault P; Herschlag D; Celander DW; Cech TR
    Nucleic Acids Res; 1992 Dec; 20(24):6613-9. PubMed ID: 1480482
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure of the P1 helix from group I self-splicing introns.
    Allain FH; Varani G
    J Mol Biol; 1995 Jul; 250(3):333-53. PubMed ID: 7608979
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The conserved terminal guanosine of a group I intron can help prevent reopening of the ligated exons.
    Suh E; Waring RB
    J Mol Biol; 1993 Jul; 232(2):375-85. PubMed ID: 7688426
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Monitoring of the cooperative unfolding of the sunY group I intron of bacteriophage T4. The active form of the sunY ribozyme is stabilized by multiple interactions with 3' terminal intron components.
    Jaeger L; Westhof E; Michel F
    J Mol Biol; 1993 Nov; 234(2):331-46. PubMed ID: 8230218
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A 3' splice site-binding sequence in the catalytic core of a group I intron.
    Burke JM; Esherick JS; Burfeind WR; King JL
    Nature; 1990 Mar; 344(6261):80-2. PubMed ID: 2406615
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RNA splicing: group I intron crystal structures reveal the basis of splice site selection and metal ion catalysis.
    Stahley MR; Strobel SA
    Curr Opin Struct Biol; 2006 Jun; 16(3):319-26. PubMed ID: 16697179
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identifying RNA minor groove tertiary contacts by nucleotide analogue interference mapping with N2-methylguanosine.
    Ortoleva-Donnelly L; Kronman M; Strobel SA
    Biochemistry; 1998 Sep; 37(37):12933-42. PubMed ID: 9737873
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sequence specificity of a group II intron ribozyme: multiple mechanisms for promoting unusually high discrimination against mismatched targets.
    Xiang Q; Qin PZ; Michels WJ; Freeland K; Pyle AM
    Biochemistry; 1998 Mar; 37(11):3839-49. PubMed ID: 9521704
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ribozyme recognition of RNA by tertiary interactions with specific ribose 2'-OH groups.
    Pyle AM; Cech TR
    Nature; 1991 Apr; 350(6319):628-31. PubMed ID: 1708111
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antagonistic substrate binding by a group II intron ribozyme.
    Qin PZ; Pyle AM
    J Mol Biol; 1999 Aug; 291(1):15-27. PubMed ID: 10438603
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystal structure of a phage Twort group I ribozyme-product complex.
    Golden BL; Kim H; Chase E
    Nat Struct Mol Biol; 2005 Jan; 12(1):82-9. PubMed ID: 15580277
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The guanosine binding site of the Tetrahymena ribozyme.
    Michel F; Hanna M; Green R; Bartel DP; Szostak JW
    Nature; 1989 Nov; 342(6248):391-5. PubMed ID: 2685606
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A mechanistic framework for the second step of splicing catalyzed by the Tetrahymena ribozyme.
    Bevilacqua PC; Sugimoto N; Turner DH
    Biochemistry; 1996 Jan; 35(2):648-58. PubMed ID: 8555239
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Catalysis of RNA cleavage by a ribozyme derived from the group I intron of Anabaena pre-tRNA(Leu).
    Zaug AJ; Dávila-Aponte JA; Cech TR
    Biochemistry; 1994 Dec; 33(49):14935-47. PubMed ID: 7527660
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design of hairpin ribozyme variants with improved activity for poorly processed substrates.
    Drude I; Strahl A; Galla D; Müller O; Müller S
    FEBS J; 2011 Feb; 278(4):622-33. PubMed ID: 21199369
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The 2'-hydroxyl group of the guanosine nucleophile donates a functionally important hydrogen bond in the tetrahymena ribozyme reaction.
    Hougland JL; Sengupta RN; Dai Q; Deb SK; Piccirilli JA
    Biochemistry; 2008 Jul; 47(29):7684-94. PubMed ID: 18572927
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Binding of guanosine and 3' splice site analogues to a group I ribozyme: interactions with functional groups of guanosine and with additional nucleotides.
    Moran S; Kierzek R; Turner DH
    Biochemistry; 1993 May; 32(19):5247-56. PubMed ID: 8494902
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.