BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 8573591)

  • 1. Dependence of flux size and efficiency of oxidative phosphorylation on external osmolarity in isolated rat liver mitochondria: role of adenine nucleotide carrier.
    Devin A; Guérin B; Rigoulet M
    Biochim Biophys Acta; 1996 Jan; 1273(1):13-20. PubMed ID: 8573591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energetics of swelling in isolated hepatocytes: a comprehensive study.
    Devin A; Espié P; Guérin B; Rigoulet M
    Mol Cell Biochem; 1998 Jul; 184(1-2):107-21. PubMed ID: 9746316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature dependence of the coupling efficiency of rat liver oxidative phosphorylation: role of adenine nucleotide translocator.
    Quentin E; Avéret N; Guérin B; Rigoulet M
    Biochem Biophys Res Commun; 1994 Jul; 202(2):816-21. PubMed ID: 8048953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative phosphorylation in intact hepatocytes: quantitative characterization of the mechanisms of change in efficiency and cellular consequences.
    Leverve X; Sibille B; Devin A; Piquet MA; Espié P; Rigoulet M
    Mol Cell Biochem; 1998 Jul; 184(1-2):53-65. PubMed ID: 9746312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors determining the relative contribution of the adenine-nucleotide translocator and the ADP-regenerating system to the control of oxidative phosphorylation in isolated rat-liver mitochondria.
    Wanders RJ; Groen AK; Van Roermund CW; Tager JM
    Eur J Biochem; 1984 Jul; 142(2):417-24. PubMed ID: 6086353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative analysis of some mechanisms affecting the yield of oxidative phosphorylation: dependence upon both fluxes and forces.
    Rigoulet M; Leverve X; Fontaine E; Ouhabi R; Guérin B
    Mol Cell Biochem; 1998 Jul; 184(1-2):35-52. PubMed ID: 9746311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rate control of phosphorylation-coupled respiration by rat liver mitochondria.
    Davis EJ; Davis-Van Thienen WI
    Arch Biochem Biophys; 1984 Sep; 233(2):573-81. PubMed ID: 6486800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The yield of oxidative phosphorylation is controlled both by force and flux.
    Fontaine EM; Devin A; Rigoulet M; Leverve XM
    Biochem Biophys Res Commun; 1997 Mar; 232(2):532-5. PubMed ID: 9125216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the extramitochondrial adenine nucleotide pool size on oxidative phosphorylation in isolated rat liver mitochondria.
    Schild L; Gellerich FN
    Eur J Biochem; 1998 Mar; 252(3):508-12. PubMed ID: 9546667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rate-controlling steps of oxidative phosphorylation in rat liver mitochondria. A synoptic approach of model and experiment.
    Bohnensack R; Küster U; Letko G
    Biochim Biophys Acta; 1982 Jun; 680(3):271-80. PubMed ID: 7104323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of polyunsaturated fatty acids deficiency on oxidative phosphorylation in rat liver mitochondria.
    Fontaine EM; Moussa M; Devin A; Garcia J; Ghisolfi J; Rigoulet M; Leverve XM
    Biochim Biophys Acta; 1996 Sep; 1276(3):181-7. PubMed ID: 8856103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sigmoidal relation between mitochondrial respiration and log ([ATP]/[ADP])out under conditions of extramitochondrial ATP utilization. Implications for the control and thermodynamics of oxidative phosphorylation.
    Wanders RJ; Westerhoff HV
    Biochemistry; 1988 Oct; 27(20):7832-40. PubMed ID: 3207715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic stoichiometry of yeast mitochondrial oxidative phosphorylation.
    Fitton V; Rigoulet M; Ouhabi R; Guérin B
    Biochemistry; 1994 Aug; 33(32):9692-8. PubMed ID: 8068647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intramitochondrial fatty acid activation enhances control strength of adenine nucleotide translocase.
    Schönfeld P; Bohnensack R
    Biomed Biochim Acta; 1991; 50(7):841-9. PubMed ID: 1759963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dependence of mitochondrial oxidative phosphorylation on activity of the adenine nucleotide translocase.
    Forman NG; Wilson DF
    J Biol Chem; 1983 Jul; 258(14):8649-55. PubMed ID: 6305996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the plasticizer di-(2-ethylhexyl)phthalate on oxidative phosphorylation in rat liver mitochondria: modification of the function of the adenine nucleotide translocator.
    Kora S; Sado M; Terada H
    J Pharmacobiodyn; 1988 Dec; 11(12):773-8. PubMed ID: 2855530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response of isolated rat liver mitochondria to variation of external osmolarity in KCl medium: regulation of matrix volume and oxidative phosphorylation.
    Devin A; Guérin B; Rigoulet M
    J Bioenerg Biomembr; 1997 Dec; 29(6):579-90. PubMed ID: 9559859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolite transport in mitochondria as a function of osmolarity.
    Chávez E; Bravo C; Holguín JA
    Arch Biochem Biophys; 1987 Feb; 253(1):94-9. PubMed ID: 2949702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of mitochondrial oxidative phosphorylation.
    Kholodenko BN
    J Theor Biol; 1984 Mar; 107(2):179-88. PubMed ID: 6717037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thyroid-hormone control of state-3 respiration in isolated rat liver mitochondria.
    Hafner RP; Brown GC; Brand MD
    Biochem J; 1990 Feb; 265(3):731-4. PubMed ID: 2306210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.