These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 8573591)

  • 21. Effect of adenine nucleotide pool size in mitochondria on intramitochondrial ATP levels.
    Schild L; Blair PV; Davis WI; Baugh S
    Biochim Biophys Acta; 1999 Sep; 1413(1):14-20. PubMed ID: 10524260
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of oxidative phosphorylation in mitochondria by external free Ca2+ concentrations.
    Moreno-Sánchez R
    J Biol Chem; 1985 Apr; 260(7):4028-34. PubMed ID: 2858485
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Control of oxidative phosphorylation in rat heart mitochondria. The role of the adenine nucleotide carrier.
    Doussiere J; Ligeti E; Brandolin G; Vignais PV
    Biochim Biophys Acta; 1984 Aug; 766(2):492-500. PubMed ID: 6087900
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling of ATP-ADP steady-state exchange rate mediated by the adenine nucleotide translocase in isolated mitochondria.
    Metelkin E; Demin O; Kovács Z; Chinopoulos C
    FEBS J; 2009 Dec; 276(23):6942-55. PubMed ID: 19860824
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Control processes in oxidative phosphorylation: kinetic constraints and stoichiometry.
    Rigoulet M
    Biochim Biophys Acta; 1990 Jul; 1018(2-3):185-9. PubMed ID: 2144185
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adenine nucleotide pool size, adenine nucleotide translocase activity, and respiratory activity in newborn rabbit liver mitochondria.
    Rulfs J; Aprille JR
    Biochim Biophys Acta; 1982 Aug; 681(2):300-4. PubMed ID: 6288086
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phosphate affects the distribution of flux control among the enzymes of oxidative phosphorylation in rat skeletal muscle mitochondria.
    Wisniewski E; Kunz WS; Gellerich FN
    J Biol Chem; 1993 May; 268(13):9343-6. PubMed ID: 8486629
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Control of oxidative phosphorylation in rat liver mitochondria: effect of ionic media.
    Devin A; Guérin B; Rigoulet M
    Biochim Biophys Acta; 1997 Apr; 1319(2-3):293-300. PubMed ID: 9131050
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Top-down control analysis of temperature effect on oxidative phosphorylation.
    Dufour S; Rousse N; Canioni P; Diolez P
    Biochem J; 1996 Mar; 314 ( Pt 3)(Pt 3):743-51. PubMed ID: 8615765
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetic limitations in the overall reaction of mitochondrial oxidative phosphorylation accounting for flux-dependent changes in the apparent delta GexP/delta mu H+ ratio.
    Kunz W; Gellerich FN; Schild L; Schönfeld P
    FEBS Lett; 1988 Jun; 233(1):17-21. PubMed ID: 2898384
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Studies on the effect of copper deficiency on rat liver mitochondria. III. Effects on adenine nucleotide translocase.
    Davies NT; Lawrence CB
    Biochim Biophys Acta; 1986 Mar; 848(3):294-304. PubMed ID: 3004576
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modification of liver mitochondrial lipids and of adenine nucleotide translocase and oxidative phosphorylation by cold adaptation.
    Mak IT; Shrago E; Elson CE
    Biochim Biophys Acta; 1983 Feb; 722(2):302-9. PubMed ID: 6301553
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanisms of inhibition and uncoupling of respiration in isolated rat liver mitochondria by the general anesthetic 2,6-diisopropylphenol.
    Rigoulet M; Devin A; Avéret N; Vandais B; Guérin B
    Eur J Biochem; 1996 Oct; 241(1):280-5. PubMed ID: 8898917
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Theoretical studies on the control of oxidative phosphorylation in muscle mitochondria: application to mitochondrial deficiencies.
    Korzeniewski B; Mazat JP
    Biochem J; 1996 Oct; 319 ( Pt 1)(Pt 1):143-8. PubMed ID: 8870661
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of the adenine nucleotide translocator in oxidative phosphorylation. A theoretical investigation on the basis of a comprehensive rate law of the translocator.
    Bohnensack R
    J Bioenerg Biomembr; 1982 Feb; 14(1):45-61. PubMed ID: 6292176
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Application of modular control analysis to inhibition of the adenine nucleotide translocator by palmitoyl-CoA.
    Ciapaite J; van Eikenhorst G; Krab K
    Mol Biol Rep; 2002; 29(1-2):13-6. PubMed ID: 12241043
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Control of oxidative phosphorylation in AS-30D hepatoma mitochondria.
    López-Gómez FJ; Torres-Márquez ME; Moreno-Sánchez R
    Int J Biochem; 1993 Mar; 25(3):373-7. PubMed ID: 8096469
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contribution of the translocator of adenine nucleotides and the ATP synthase to the control of oxidative phosphorylation and arsenylation in liver mitochondria.
    Moreno-Sánchez R
    J Biol Chem; 1985 Oct; 260(23):12554-60. PubMed ID: 2864340
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of different energy drains on the interrelationship between the rate of respiration, proton-motive force and adenine nucleotide patterns in isolated mitochondria.
    Küster U; Letko G; Kunz W; Duszyńsky J; Bogucka K; Wojtczak L
    Biochim Biophys Acta; 1981 Jun; 636(1):32-8. PubMed ID: 7284343
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Control of mitochondrial respiration. The contribution of the adenine nucleotide translocator depends on the ATP- and ADP-consuming enzymes.
    Gellerich FN; Bohnensack R; Kunz W
    Biochim Biophys Acta; 1983 Feb; 722(2):381-91. PubMed ID: 6301555
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.