These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 8573693)

  • 1. General linear compartment model with zero input: I. Kinetic equations.
    Varón R; García-Meseguer MJ; García-Cánovas F; Havsteen B
    Biosystems; 1995; 36(2):121-33. PubMed ID: 8573693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. General linear compartment model with zero input: II. The computerized derivation of the kinetic equations.
    Varón R; García-Meseguer MJ; Havsteen B
    Biosystems; 1995; 36(2):135-44. PubMed ID: 8573694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time course equations of the amount of substance in a linear compartmental system and their computerized derivation.
    García-Meseguer MJ; Vidal de Labra JA; García-Cánovas F; Havsteen BH; García-Moreno M; Varón R
    Biosystems; 2001 Mar; 59(3):197-220. PubMed ID: 11311468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. General linear compartment model with zero input: III. First passage residence time of enzyme systems.
    Varón R; García-Meseguer MJ; Valero E; García-Moreno M; García-Cánovas F
    Biosystems; 1995; 36(2):145-56. PubMed ID: 8573695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Derivation of Laplace transform for the general disposition deconvolution equation in drug metabolism kinetics.
    Popović J
    Exp Toxicol Pathol; 1999 Jul; 51(4-5):409-11. PubMed ID: 10445406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mean residence times in linear compartmental systems. Symbolic formulae for their direct evaluation.
    García-Meseguer MJ; Vidal de Labra JA; García-Moreno M; García-Cánovas F; Havsteen BH; Varón R
    Bull Math Biol; 2003 Mar; 65(2):279-308. PubMed ID: 12675333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A two-step computer-assisted method for deriving steady-state rate equations.
    Fromm SJ; Fromm HJ
    Biochem Biophys Res Commun; 1999 Nov; 265(2):448-52. PubMed ID: 10558887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noise-induced breakdown of the Michaelis-Menten equation in steady-state conditions.
    Grima R
    Phys Rev Lett; 2009 May; 102(21):218103. PubMed ID: 19519139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient phase of enzyme reactions. Time course equations of the strict and the rapid equilibrium conditions and their computerized derivation.
    Varón R; Ruiz-Galea MM; Garrido-del Solo C; García-Sevilla F; García-Moreno M; García-Cánovas F; Havsteen BH
    Biosystems; 1999 May; 50(2):99-126. PubMed ID: 10367974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fitting enzyme kinetic data with KinTek Global Kinetic Explorer.
    Johnson KA
    Methods Enzymol; 2009; 467():601-626. PubMed ID: 19897109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A probabilistic approach to compact steady-state kinetic equations for enzymic reactions.
    Malygin EG; Hattman S
    J Theor Biol; 2006 Oct; 242(3):627-33. PubMed ID: 16697416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blind identification of the kinetic parameters in three-compartment models.
    Riabkov DY; Di Bella EV
    Phys Med Biol; 2004 Mar; 49(5):639-64. PubMed ID: 15070194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A kinetic model for cardiac PET with [1-carbon-11]-acetate.
    van den Hoff J; Burchert W; Wolpers HG; Meyer GJ; Hundeshagen H
    J Nucl Med; 1996 Mar; 37(3):521-9. PubMed ID: 8772659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual evaluation of kinetic characteristics of PET probe for neuroreceptors using a two-phase graphic plot analysis.
    Ito H; Ikoma Y; Seki C; Kimura Y; Kawaguchi H; Takuwa H; Ichise M; Suhara T; Kanno I
    Ann Nucl Med; 2017 May; 31(4):273-282. PubMed ID: 28181119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic modelling using basis functions derived from two-tissue compartmental models with a plasma input function: general principle and application to [18F]fluorodeoxyglucose positron emission tomography.
    Hong YT; Fryer TD
    Neuroimage; 2010 May; 51(1):164-72. PubMed ID: 20156574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. General pharmacokinetic equations for linear mammillary models with drug absorption into peripheral compartments.
    Vaughan DP; Mallard DJ; Trainor A; Mitchard M
    Eur J Clin Pharmacol; 1975 Feb; 8(2):141-8. PubMed ID: 1233210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust regression of enzyme kinetic data.
    Cornish-Bowden A; Endrenyi L
    Biochem J; 1986 Feb; 234(1):21-9. PubMed ID: 3707541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new graphic plot analysis for determination of neuroreceptor binding in positron emission tomography studies.
    Ito H; Yokoi T; Ikoma Y; Shidahara M; Seki C; Naganawa M; Takahashi H; Takano H; Kimura Y; Ichise M; Suhara T
    Neuroimage; 2010 Jan; 49(1):578-86. PubMed ID: 19631754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linearized-moment analysis of the temperature jump and temperature defect in the Knudsen layer of a rarefied gas.
    Gu XJ; Emerson DR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063020. PubMed ID: 25019892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer program for the kinetic equations of enzyme reactions. The case in which more than one enzyme species is present at the onset of the reaction.
    Varón R; Havsteen BH; García M; García-Canóvas F; Tudela J
    Biochem J; 1991 Aug; 278 ( Pt 1)(Pt 1):91-7. PubMed ID: 1883344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.