These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 8573694)

  • 1. General linear compartment model with zero input: II. The computerized derivation of the kinetic equations.
    Varón R; García-Meseguer MJ; Havsteen B
    Biosystems; 1995; 36(2):135-44. PubMed ID: 8573694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. General linear compartment model with zero input: I. Kinetic equations.
    Varón R; García-Meseguer MJ; García-Cánovas F; Havsteen B
    Biosystems; 1995; 36(2):121-33. PubMed ID: 8573693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time course equations of the amount of substance in a linear compartmental system and their computerized derivation.
    García-Meseguer MJ; Vidal de Labra JA; García-Cánovas F; Havsteen BH; García-Moreno M; Varón R
    Biosystems; 2001 Mar; 59(3):197-220. PubMed ID: 11311468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. General linear compartment model with zero input: III. First passage residence time of enzyme systems.
    Varón R; García-Meseguer MJ; Valero E; García-Moreno M; García-Cánovas F
    Biosystems; 1995; 36(2):145-56. PubMed ID: 8573695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The computerized derivation of rate equations for enzyme reactions on the basis of the pseudo-steady-state assumption and the rapid-equilibrium assumption.
    Ishikawa H; Maeda T; Hikita H; Miyatake K
    Biochem J; 1988 Apr; 251(1):175-81. PubMed ID: 3390151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer program for the expression of the kinetic equations of enzyme reactions as functions of the rate constants and the initial concentrations.
    Varón R; Havsteen BH; García M; García Cánovas F; Tudela J
    Biochem J; 1990 Sep; 270(3):825-8. PubMed ID: 2241914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient phase of enzyme reactions. Time course equations of the strict and the rapid equilibrium conditions and their computerized derivation.
    Varón R; Ruiz-Galea MM; Garrido-del Solo C; García-Sevilla F; García-Moreno M; García-Cánovas F; Havsteen BH
    Biosystems; 1999 May; 50(2):99-126. PubMed ID: 10367974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A two-step computer-assisted method for deriving steady-state rate equations.
    Fromm SJ; Fromm HJ
    Biochem Biophys Res Commun; 1999 Nov; 265(2):448-52. PubMed ID: 10558887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer program for the equations describing the steady state of enzyme reactions.
    Varon R; Garcia-Sevilla F; Garcia-Moreno M; Garcia-Canovas F; Peyro R; Duggleby RG
    Comput Appl Biosci; 1997 Apr; 13(2):159-67. PubMed ID: 9146963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer program for the kinetic equations of enzyme reactions. The case in which more than one enzyme species is present at the onset of the reaction.
    Varón R; Havsteen BH; García M; García-Canóvas F; Tudela J
    Biochem J; 1991 Aug; 278 ( Pt 1)(Pt 1):91-7. PubMed ID: 1883344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The computerized derivation of steady-state rate equations for enzyme kinetics.
    Herries DG
    Biochem J; 1984 Oct; 223(2):551-3. PubMed ID: 6497862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Some formal approaches to the analysis of kinetic data in terms of linear compartmental systems.
    BERMAN M; WEISS MF; SHAHN E
    Biophys J; 1962 May; 2(3):289-316. PubMed ID: 13867976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pocket computer program for fitting the Hill equation.
    Pinto GF; Oestreicher EG
    Comput Biol Med; 1984; 14(4):507-11. PubMed ID: 6548948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of progress curves for enzyme-catalysed reactions. Automatic construction of computer programs for fitting integrated rate equations.
    Duggleby RG; Wood C
    Biochem J; 1989 Mar; 258(2):397-402. PubMed ID: 2705990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fitting integrated enzyme rate equations to progress curves with the use of a weighting matrix.
    Franco R; Aran JM; Canela EI
    Biochem J; 1991 Mar; 274 ( Pt 2)(Pt 2):509-11. PubMed ID: 2006914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A program for the numerical integration of enzyme kinetic equations using small computers.
    Franco R; Canela EI
    Int J Biomed Comput; 1984; 15(6):419-32. PubMed ID: 6548981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fitting enzyme kinetic data with KinTek Global Kinetic Explorer.
    Johnson KA
    Methods Enzymol; 2009; 467():601-626. PubMed ID: 19897109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computerized evaluation of mean residence times in multicompartmental linear system and pharmacokinetics.
    Villalba JM; Barbero AJ; Diaz-Sierra R; Arribas E; Garcia-Meseguer MJ; Garcia-Sevilla F; Garcia-Moreno M; De Labra JA; Varon R
    J Comput Chem; 2011 Apr; 32(5):915-31. PubMed ID: 20960438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A probabilistic approach to compact steady-state kinetic equations for enzymic reactions.
    Malygin EG; Hattman S
    J Theor Biol; 2006 Oct; 242(3):627-33. PubMed ID: 16697416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multifit: a flexible non-linear least squares regression program in BASIC.
    Walmsley AR; Lowe AG
    Comput Methods Programs Biomed; 1985 Nov; 21(2):113-8. PubMed ID: 3853483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.