These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 8573877)

  • 1. A new microporous polyurethane vascular graft prepared by an excimer laser ablation technique.
    Doi K; Nakayama Y; Oka T; Matsuda T
    ASAIO J; 1995; 41(3):M608-11. PubMed ID: 8573877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel compliant and tissue-permeable microporous polyurethane vascular prosthesis fabricated using an excimer laser ablation technique.
    Doi K; Nakayama Y; Matsuda T
    J Biomed Mater Res; 1996 May; 31(1):27-33. PubMed ID: 8731146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced vascularization in a microporous polyurethane graft impregnated with basic fibroblast growth factor and heparin.
    Doi K; Matsuda T
    J Biomed Mater Res; 1997 Mar; 34(3):361-70. PubMed ID: 9086406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Significance of porosity and compliance of microporous, polyurethane-based microarterial vessel on neoarterial wall regeneration.
    Doi K; Matsuda T
    J Biomed Mater Res; 1997 Dec; 37(4):573-84. PubMed ID: 9407307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vascular endothelial growth factor enhances vascularization in microporous small caliber polyurethane grafts.
    Masuda S; Doi K; Satoh S; Oka T; Matsuda T
    ASAIO J; 1997; 43(5):M530-4. PubMed ID: 9360099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impregnation of basic fibroblast growth factor on a microporous small caliber graft enhances vascularization.
    Doi K; Satoh S; Oka T; Matsuda T
    ASAIO J; 1996; 42(5):M394-8. PubMed ID: 8944914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface microarchitectural design in biomedical applications: in vitro transmural endothelialization on microporous segmented polyurethane films fabricated using an excimer laser.
    Matsuda T; Nakayama Y
    J Biomed Mater Res; 1996 Jun; 31(2):235-42. PubMed ID: 8731212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compliance effects on small diameter polyurethane graft patency.
    Uchida N; Kambic H; Emoto H; Chen JF; Hsu S; Murabayshi S; Harasaki H; Nosé Y
    J Biomed Mater Res; 1993 Oct; 27(10):1269-79. PubMed ID: 8245041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microporous polymer surfaces prepared by an excimer laser ablation technique.
    Nakayama Y; Matsuda T
    ASAIO J; 1994; 40(3):M590-3. PubMed ID: 8555583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface microarchitectural design in biomedical applications: in vivo analysis of tissue ingrowth in excimer laser-directed micropored scaffold for cardiovascular tissue engineering.
    Nakayama Y; Nishi S; Ishibashi-Ueda H; Matsuda T
    J Biomed Mater Res; 2000 Sep; 51(3):520-8. PubMed ID: 10880097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo evaluation of porous versus skinned polyurethane-polydimethylsiloxane small diameter vascular grafts.
    Okoshi T; Goddard M; Galletti PM; Soldani G
    ASAIO Trans; 1991; 37(3):M480-1. PubMed ID: 1751244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Newly designed compliant hierarchic hybrid vascular graft wrapped with microprocessed elastomeric film--II: Morphogenesis and compliance change upon implantation.
    He H; Matsuda T
    Cell Transplant; 2002; 11(1):75-87. PubMed ID: 12095223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Test of carotid artery replacement by polyurethane artificial vascular graft with recombinant fibrinolytic enzyme factor II-modified lumina in dogs].
    Pan S; Yin S; Yao J; Zheng H; Yi W; Dai G
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Jul; 22(7):832-7. PubMed ID: 18681285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental studies on application of small-caliber vascular prosthesis produced by polyurethane.
    Miyamoto K; Sugimoto T; Okada M; Maeda S
    Ann Thorac Cardiovasc Surg; 1999 Jun; 5(3):174-81. PubMed ID: 10413764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porous polyurethane vascular prostheses with variable compliances.
    Liu SQ; Kodama M
    J Biomed Mater Res; 1992 Nov; 26(11):1489-502. PubMed ID: 1447231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative In vitro evaluation of two different preparations of small diameter polyurethane vascular grafts.
    Hsu Sh; Tseng Hj; Wu Ms
    Artif Organs; 2000 Feb; 24(2):119-28. PubMed ID: 10718765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microporous, complaint, biodegradable vascular grafts for the regeneration of the arterial wall in rat abdominal aorta.
    van der Lei B; Bartels HL; Nieuwenhuis P; Wildevuur CR
    Surgery; 1985 Nov; 98(5):955-63. PubMed ID: 4060072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of microporous covered stents: geometrical design of the luminal surface.
    Nakayama Y; Nishi S; Ishibashi-Ueda H; Okamoto Y; Nemoto Y
    Int J Artif Organs; 2005 Jun; 28(6):600-8. PubMed ID: 16015570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of luminal pore size on the patency rate and endothelialization of polymeric microvenous prostheses.
    Hermens RA; Doorn AB; van der Lei B; Schakenraad JM; Bartels HL; Pennings AJ; Robinson PH
    Microsurgery; 1995; 16(7):482-7. PubMed ID: 8544708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coaxial double-tubular compliant arterial graft prosthesis: time-dependent morphogenesis and compliance changes after implantation.
    Sonoda H; Takamizawa K; Nakayama Y; Yasui H; Matsuda T
    J Biomed Mater Res A; 2003 May; 65(2):170-81. PubMed ID: 12734809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.