These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 8574306)

  • 1. Fundamental frequency and tracheal pressure during three types of vocalizations elicited from anesthetized dogs.
    Solomon NP; Luschei ES; Liu K
    J Voice; 1995 Dec; 9(4):403-12. PubMed ID: 8574306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain stem integration of vocalization: role of the midbrain periaqueductal gray.
    Zhang SP; Davis PJ; Bandler R; Carrive P
    J Neurophysiol; 1994 Sep; 72(3):1337-56. PubMed ID: 7807216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subglottal pressure, tracheal airflow, and intrinsic laryngeal muscle activity during rat ultrasound vocalization.
    Riede T
    J Neurophysiol; 2011 Nov; 106(5):2580-92. PubMed ID: 21832032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of subglottic pressure on fundamental frequency of the canine larynx with active muscle tensions.
    Hsiao TY; Solomon NP; Luschei ES; Titze IR; Liu K; Fu TC; Hsu MM
    Ann Otol Rhinol Laryngol; 1994 Oct; 103(10):817-21. PubMed ID: 7944175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential Sources of High Frequency and Biphonic Vocalization in the Dhole (Cuon alpinus).
    Frey R; Volodin IA; Fritsch G; Volodina EV
    PLoS One; 2016; 11(1):e0146330. PubMed ID: 26730952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The midbrain periaqueductal gray: a brainstem structure involved in vocalization.
    Larson CR
    J Speech Hear Res; 1985 Jun; 28(2):241-9. PubMed ID: 4010254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of geniohyoid, cricothyroid and sternothyroid muscle stimulation on voice fundamental frequency of electrically elicited phonation in rhesus macaque.
    Sapir S; Campbell C; Larson C
    Laryngoscope; 1981 Mar; 91(3):457-68. PubMed ID: 7464406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motor organization of positive and negative emotional vocalization in the cat midbrain periaqueductal gray.
    Subramanian HH; Arun M; Silburn PA; Holstege G
    J Comp Neurol; 2016 Jun; 524(8):1540-57. PubMed ID: 26235936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain stem integration of vocalization: role of the nucleus retroambigualis.
    Zhang SP; Bandler R; Davis PJ
    J Neurophysiol; 1995 Dec; 74(6):2500-12. PubMed ID: 8747209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vocalization and marked pressor effect evoked from the region of the nucleus retroambigualis in the caudal ventrolateral medulla of the cat.
    Zhang SP; Davis PJ; Carrive P; Bandler R
    Neurosci Lett; 1992 Jun; 140(1):103-7. PubMed ID: 1383887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional roles of the superior laryngeal nerve afferents in electrically induced vocalization in anesthetized cats.
    Shiba K; Yoshida K; Miura T
    Neurosci Res; 1995 Mar; 22(1):23-30. PubMed ID: 7792080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Internal superior laryngeal nerve afferent activity during respiration and evoked vocalization in cats.
    Clark KF; Farber JP
    Ann Otol Rhinol Laryngol Suppl; 2001 Jul; 187():3-17. PubMed ID: 11459373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Function of the laryngeal muscles in the control of the fundamental frequency of voice].
    Ayache S; Fernandes M; Ouaknine M; Giovanni A
    Ann Otolaryngol Chir Cervicofac; 2002 Sep; 119(4):243-51. PubMed ID: 12410121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microstimulation in Different Parts of the Periaqueductal Gray Generates Different Types of Vocalizations in the Cat.
    Subramanian HH; Balnave RJ; Holstege G
    J Voice; 2021 Sep; 35(5):804.e9-804.e25. PubMed ID: 32147316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laryngeal pacing in unilateral vocal cord paralysis. An experimental study.
    Kojima H; Omori K; Shoji K; Honjo I; Isshiki N; Nakamura T; Shimizu Y
    Arch Otolaryngol Head Neck Surg; 1990 Jan; 116(1):74-8. PubMed ID: 2294945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Register transitions in an in vivo canine model as a function of intrinsic laryngeal muscle stimulation, fundamental frequency, and sound pressure level.
    Schlegel P; Berry DA; Moffatt C; Zhang Z; Chhetri DK
    J Acoust Soc Am; 2024 Mar; 155(3):2139-2150. PubMed ID: 38498507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterns of laryngeal electromyography and the activity of the respiratory system during spontaneous laughter.
    Luschei ES; Ramig LO; Finnegan EM; Baker KK; Smith ME
    J Neurophysiol; 2006 Jul; 96(1):442-50. PubMed ID: 16772517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulmonary and upper airway afferent influences on the motor pattern of vocalization evoked by excitation of the midbrain periaqueductal gray of the cat.
    Davis PJ; Zhang SP; Bandler R
    Brain Res; 1993 Apr; 607(1-2):61-80. PubMed ID: 8481812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of fundamental frequency by laryngeal muscles during vibrato.
    Hsiao TY; Solomon NP; Luschei ES; Titze IR
    J Voice; 1994 Sep; 8(3):224-9. PubMed ID: 7987424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relation of recurrent laryngeal nerve compound action potential to laryngeal biomechanics.
    Nasri S; Dulguerov P; Damrose EJ; Ye M; Kreiman J; Berke GS
    Laryngoscope; 1995 Jun; 105(6):639-43. PubMed ID: 7769950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.