These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 8574405)

  • 1. Starvation yields a drastic decrease in outer-membrane permeability to a periplasmic foreign protein in Myxococcus xanthus.
    Laval-Favre K; Letouvet-Pawlak B; Barray S; Guespin-Michel JF
    Microbiology (Reading); 1995 Dec; 141 ( Pt 12)():3119-26. PubMed ID: 8574405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A gene involved in both protein secretion during growth and starvation-induced development encodes a subunit of the NADH:ubiquinone oxidoreductase in Myxococcus xanthus.
    Laval-Favre K; Letouvet-Pawlak B; Friedrich T; Alexandre J; Guespin-Michel JF
    Mol Microbiol; 1997 Mar; 23(5):1043-52. PubMed ID: 9076740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of the omega4400 regulatory region, a developmental promoter of Myxococcus xanthus.
    Brandner JP; Kroos L
    J Bacteriol; 1998 Apr; 180(8):1995-2004. PubMed ID: 9555878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The lonD gene is homologous to the lon gene encoding an ATP-dependent protease and is essential for the development of Myxococcus xanthus.
    Tojo N; Inouye S; Komano T
    J Bacteriol; 1993 Jul; 175(14):4545-9. PubMed ID: 8331083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and characterization of the pH 2.5 acid phosphatase gene, appA: cyclic AMP mediated negative regulation.
    Touati E; Danchin A
    Mol Gen Genet; 1987 Jul; 208(3):499-505. PubMed ID: 2823063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Myxococcus xanthus dsg gene product performs functions of translation initiation factor IF3 in vivo.
    Kalman LV; Cheng YL; Kaiser D
    J Bacteriol; 1994 Mar; 176(5):1434-42. PubMed ID: 8113185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Release of a cell surface protein during development of Myxococcus xanthus.
    Glufka R; Maeba P
    J Bacteriol; 1991 Dec; 173(24):7988-91. PubMed ID: 1744056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning and nucleotide sequence of the Myxococcus xanthus lon gene: indispensability of lon for vegetative growth.
    Tojo N; Inouye S; Komano T
    J Bacteriol; 1993 Apr; 175(8):2271-7. PubMed ID: 8468287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. devI is an evolutionarily young negative regulator of Myxococcus xanthus development.
    Rajagopalan R; Wielgoss S; Lippert G; Velicer GJ; Kroos L
    J Bacteriol; 2015 Apr; 197(7):1249-62. PubMed ID: 25645563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pph1 from Myxococcus xanthus is a protein phosphatase involved in vegetative growth and development.
    Treuner-Lange A; Ward MJ; Zusman DR
    Mol Microbiol; 2001 Apr; 40(1):126-40. PubMed ID: 11298281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GidA is an FAD-binding protein involved in development of Myxococcus xanthus.
    White DJ; Merod R; Thomasson B; Hartzell PL
    Mol Microbiol; 2001 Oct; 42(2):503-17. PubMed ID: 11703671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new oxygen-regulated operon in Escherichia coli comprises the genes for a putative third cytochrome oxidase and for pH 2.5 acid phosphatase (appA).
    Dassa J; Fsihi H; Marck C; Dion M; Kieffer-Bontemps M; Boquet PL
    Mol Gen Genet; 1991 Oct; 229(3):341-52. PubMed ID: 1658595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-induced carotenogenesis in Myxococcus xanthus: light-dependent membrane sequestration of ECF sigma factor CarQ by anti-sigma factor CarR.
    Gorham HC; McGowan SJ; Robson PR; Hodgson DA
    Mol Microbiol; 1996 Jan; 19(1):171-86. PubMed ID: 8821946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterologous expression of epothilone biosynthetic genes in Myxococcus xanthus.
    Julien B; Shah S
    Antimicrob Agents Chemother; 2002 Sep; 46(9):2772-8. PubMed ID: 12183227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FrzCD, a methyl-accepting taxis protein from Myxococcus xanthus, shows modulated methylation during fruiting body formation.
    McBride MJ; Zusman DR
    J Bacteriol; 1993 Aug; 175(15):4936-40. PubMed ID: 8335650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new sigma factor, SigD, essential for stationary phase is also required for multicellular differentiation in Myxococcus xanthus.
    Ueki T; Inouye S
    Genes Cells; 1998 Jun; 3(6):371-85. PubMed ID: 9734783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of esg, a genetic locus involved in cell-cell signaling during Myxococcus xanthus development.
    Downard J; Ramaswamy SV; Kil KS
    J Bacteriol; 1993 Dec; 175(24):7762-70. PubMed ID: 8253664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AsgD, a new two-component regulator required for A-signalling and nutrient sensing during early development of Myxococcus xanthus.
    Cho K; Zusman DR
    Mol Microbiol; 1999 Oct; 34(2):268-81. PubMed ID: 10564471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence that a chaperone-usher-like pathway of Myxococcus xanthus functions in spore coat formation.
    Leng X; Zhu W; Jin J; Mao X
    Microbiology (Reading); 2011 Jul; 157(Pt 7):1886-1896. PubMed ID: 21454366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic redundancy, proximity, and functionality of lspA, the target of antibiotic TA, in the Myxococcus xanthus producer strain.
    Xiao Y; Wall D
    J Bacteriol; 2014 Mar; 196(6):1174-83. PubMed ID: 24391051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.