BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 8574548)

  • 1. Determination of the aerobic biodegradability of polymeric material in a laboratory controlled composting test.
    Pagga U; Beimborn DB; Boelens J; De Wilde B
    Chemosphere; 1995 Dec; 31(11-12):4475-87. PubMed ID: 8574548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the aerobic biodegradability of polymeric material in aquatic batch tests.
    Pagga U; Schäfer A; Müller RJ; Pantke M
    Chemosphere; 2001 Jan; 42(3):319-31. PubMed ID: 11100932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradability of Poly-3-hydroxybutyrate/Bacterial Cellulose Composites under Aerobic Conditions, Measured via Evolution of Carbon Dioxide and Spectroscopic and Diffraction Methods.
    Ruka DR; Sangwan P; Garvey CJ; Simon GP; Dean KM
    Environ Sci Technol; 2015 Aug; 49(16):9979-86. PubMed ID: 25763925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relevance of aquatic biodegradation tests for predicting degradation of polymeric materials during biological solid waste treatment.
    van der Zee M; Stoutjesdijk JH; Feil H; Feijen J
    Chemosphere; 1998 Feb; 36(3):461-73. PubMed ID: 9451809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradation of paper waste under controlled composting conditions.
    Alvarez JV; Larrucea MA; Bermúdez PA; Chicote BL
    Waste Manag; 2009 May; 29(5):1514-9. PubMed ID: 19138509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. End-of-life evaluation and biodegradation of Poly(lactic acid) (PLA)/Polycaprolactone (PCL)/Microcrystalline cellulose (MCC) polyblends under composting conditions.
    Kalita NK; Bhasney SM; Mudenur C; Kalamdhad A; Katiyar V
    Chemosphere; 2020 May; 247():125875. PubMed ID: 32069712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of lignin content and temperature on the biodegradation of lignocellulose in composting conditions.
    Vikman M; Karjomaa S; Kapanen A; Wallenius K; Itävaara M
    Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):591-8. PubMed ID: 12172631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Priming effect as determined by adding 14C-glucose to modified controlled composting test.
    Tuomela M; Hatakka A; Karjomaa S; Itävaara M
    Biodegradation; 2002; 13(2):131-40. PubMed ID: 12449315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimum moisture levels for biodegradation of mortality composting envelope materials.
    Ahn HK; Richard TL; Glanville TD
    Waste Manag; 2008; 28(8):1411-6. PubMed ID: 17900890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Composting of vegetable waste.
    Chang JI; Tsai JJ; Wu KH
    Waste Manag Res; 2006 Aug; 24(4):354-62. PubMed ID: 16941994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progress of organic matter degradation and maturity of compost produced in a large-scale composting facility.
    Nakasaki K; Marui T
    Waste Manag Res; 2011 Jun; 29(6):574-81. PubMed ID: 21216925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ISO Headspace CO2 Biodegradation Test.
    Battersby NS
    Chemosphere; 1997 Apr; 34(8):1813-22. PubMed ID: 9114487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradation of polyesters containing aromatic constituents.
    Müller RJ; Kleeberg I; Deckwer WD
    J Biotechnol; 2001 Mar; 86(2):87-95. PubMed ID: 11245897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradation of polylactide in aerobic and anaerobic thermophilic conditions.
    Itävaara M; Karjomaa S; Selin JF
    Chemosphere; 2002 Feb; 46(6):879-85. PubMed ID: 11922068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of a bacterium that degrades various polyester-based biodegradable plastics.
    Teeraphatpornchai T; Nakajima-Kambe T; Shigeno-Akutsu Y; Nakayama M; Nomura N; Nakahara T; Uchiyama H
    Biotechnol Lett; 2003 Jan; 25(1):23-8. PubMed ID: 12882301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laboratory composting of extruded poly(lactic acid) sheets.
    Ghorpade VM; Gennadios A; Hanna MA
    Bioresour Technol; 2001 Jan; 76(1):57-61. PubMed ID: 11315811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics and mechanism of the biodegradation of PLA/clay nanocomposites during thermophilic phase of composting process.
    Stloukal P; Pekařová S; Kalendova A; Mattausch H; Laske S; Holzer C; Chitu L; Bodner S; Maier G; Slouf M; Koutny M
    Waste Manag; 2015 Aug; 42():31-40. PubMed ID: 25981155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composting of de-inking sludge from the recycled paper manufacturing industry.
    Gea T; Artola A; Sánchez A
    Bioresour Technol; 2005 Jul; 96(10):1161-7. PubMed ID: 15683907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation of microbial and synthetic polyesters by fungi.
    Kim DY; Rhee YH
    Appl Microbiol Biotechnol; 2003 May; 61(4):300-8. PubMed ID: 12743758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradable kinetics and behavior of bio-based polyblends under simulated aerobic composting conditions.
    Kalita NK; Bhasney SM; Kalamdhad A; Katiyar V
    J Environ Manage; 2020 May; 261():110211. PubMed ID: 32148281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.