BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 8574548)

  • 21. Formation of chloromethoxybenzaldehyde during composting of organic household waste.
    Eklind Y; Hjelm O; Kothéus M; Kirchmann H
    Chemosphere; 2004 Aug; 56(5):475-80. PubMed ID: 15212913
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Compostability of bioplastic packaging materials: an overview.
    Kale G; Kijchavengkul T; Auras R; Rubino M; Selke SE; Singh SP
    Macromol Biosci; 2007 Mar; 7(3):255-77. PubMed ID: 17370278
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biodegradable packaging materials conception based on starch and polylactic acid (PLA) reinforced with cellulose.
    Masmoudi F; Bessadok A; Dammak M; Jaziri M; Ammar E
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20904-20914. PubMed ID: 27488705
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Application of biosurfactant in composting of agricultural waste].
    Dai F; Zeng GM; Yuan XZ; Wu XH; Shi JG
    Huan Jing Ke Xue; 2005 Jul; 26(4):181-5. PubMed ID: 16212193
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biodegradation of poly(butylene succinate) powder in a controlled compost at 58°C evaluated by naturally-occurring carbon 14 amounts in evolved CO(2) based on the ISO 14855-2 method.
    Kunioka M; Ninomiya F; Funabashi M
    Int J Mol Sci; 2009 Nov; 10(10):4267-4283. PubMed ID: 20057944
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determining biodegradability of plastic materials under controlled and natural composting environments.
    Mohee R; Unmar G
    Waste Manag; 2007; 27(11):1486-93. PubMed ID: 17010596
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Laboratory composting of extruded starch acetate and poly lactic acid blended foams.
    Ganjyal GM; Weber R; Hanna MA
    Bioresour Technol; 2007 Nov; 98(16):3176-9. PubMed ID: 17222552
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of static, in-vessel composting of MSW with thermophilic anaerobic digestion and combinations of the two processes.
    Walker L; Charles W; Cord-Ruwisch R
    Bioresour Technol; 2009 Aug; 100(16):3799-807. PubMed ID: 19345576
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The contribution of water soluble and water insoluble organic fractions to oxygen uptake rate during high rate composting.
    Giuliana D; Fabrizio A
    Biodegradation; 2007 Feb; 18(1):103-13. PubMed ID: 16477349
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The 'two-phase closed bottle test'--a suitable method for the determination of 'ready biodegradability' of poorly soluble compounds.
    Richterich K; Berger H; Steber J
    Chemosphere; 1998 Jul; 37(2):319-26. PubMed ID: 9650268
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Physico-chemical and microbial properties in thermophilic composting processes of different biological solid wastes].
    Tang JC; Zhou QX; Zhang GH
    Huan Jing Ke Xue; 2007 May; 28(5):1158-64. PubMed ID: 17633196
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biodegradability and biodegradation rate of poly(caprolactone)-starch blend and poly(butylene succinate) biodegradable polymer under aerobic and anaerobic environment.
    Cho HS; Moon HS; Kim M; Nam K; Kim JY
    Waste Manag; 2011 Mar; 31(3):475-80. PubMed ID: 21144726
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Composting in small laboratory pilots: performance and reproducibility.
    Lashermes G; Barriuso E; Le Villio-Poitrenaud M; Houot S
    Waste Manag; 2012 Feb; 32(2):271-7. PubMed ID: 21982279
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of Contois, Tessier, and first-order kinetics for modeling and simulation of a composting decomposition process.
    Wang Y; Witarsa F
    Bioresour Technol; 2016 Nov; 220():384-393. PubMed ID: 27595704
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The use of respiration indices in the composting process: a review.
    Barrena Gómez R; Vázquez Lima F; Sánchez Ferrer A
    Waste Manag Res; 2006 Feb; 24(1):37-47. PubMed ID: 16496869
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Compostability assessment of nano-reinforced poly(lactic acid) films.
    Balaguer MP; Aliaga C; Fito C; Hortal M
    Waste Manag; 2016 Feb; 48():143-155. PubMed ID: 26589869
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of five organic wastes regarding their behaviour during composting: part 1, biodegradability, stabilization kinetics and temperature rise.
    de Guardia A; Mallard P; Teglia C; Marin A; Le Pape C; Launay M; Benoist JC; Petiot C
    Waste Manag; 2010 Mar; 30(3):402-14. PubMed ID: 19954959
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microbial community succession and lignocellulose degradation during agricultural waste composting.
    Yu H; Zeng G; Huang H; Xi X; Wang R; Huang D; Huang G; Li J
    Biodegradation; 2007 Dec; 18(6):793-802. PubMed ID: 17308882
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Testing of some assumptions about biodegradability in soil as measured by carbon dioxide evolution.
    el-Din Sharabi N; Bartha R
    Appl Environ Microbiol; 1993 Apr; 59(4):1201-5. PubMed ID: 8476294
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biodegradation and ecotoxicological impact of cellulose nanocomposites in municipal solid waste composting.
    Salehpour S; Jonoobi M; Ahmadzadeh M; Siracusa V; Rafieian F; Oksman K
    Int J Biol Macromol; 2018 May; 111():264-270. PubMed ID: 29320722
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.