These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. L-, N- and T- but neither P- nor Q-type Ca2+ channels control vasopressin-induced Ca2+ influx in magnocellular vasopressin neurones isolated from the rat supraoptic nucleus. Sabatier N; Richard P; Dayanithi G J Physiol; 1997 Sep; 503 ( Pt 2)(Pt 2):253-68. PubMed ID: 9306270 [TBL] [Abstract][Full Text] [Related]
8. Intracellular Ca2+, Na+ and H+ transients evoked by kainate in the leech giant glial cells in situ. Munsch T; Deitmer JW Neurosci Res; 1997 Jan; 27(1):45-56. PubMed ID: 9089698 [TBL] [Abstract][Full Text] [Related]
9. Modulation of Ca2+ influx in leech Retzius neurons II. Effect of extracellular Ca2+. Hochstrate P; Dierkes PW; Kilb W; Schlue WR J Membr Biol; 2001 Nov; 184(1):27-33. PubMed ID: 11687875 [TBL] [Abstract][Full Text] [Related]
10. Fura-2 signals evoked by kainate in leech glial cells in the presence of different divalent cations. Munsch T; Nett W; Deitmer JW Glia; 1994 Aug; 11(4):345-53. PubMed ID: 7960037 [TBL] [Abstract][Full Text] [Related]
11. Potassium depolarization of mammalian vestibular sensory cells increases [Ca2+]i through voltage-sensitive calcium channels. Boyer C; Lehouelleur J; Sans A Eur J Neurosci; 1998 Mar; 10(3):971-5. PubMed ID: 9753164 [TBL] [Abstract][Full Text] [Related]
12. Modulation of Ca2+ influx in leech Retzius neurons. I. Effect of extracellular pH. Hochstrate P; Dierkes PW; Kilb W; Schlue WR J Membr Biol; 2001 Nov; 184(1):13-25. PubMed ID: 11687874 [TBL] [Abstract][Full Text] [Related]
13. Distribution and functional properties of glutamate receptors in the leech central nervous system. Dierkes PW; Hochstrate P; Schlue WR J Neurophysiol; 1996 Jun; 75(6):2312-21. PubMed ID: 8793744 [TBL] [Abstract][Full Text] [Related]
14. Mechanism of the kainate-induced intracellular acidification in leech Retzius neurons. Kilb W; Schlue WR Brain Res; 1999 Apr; 824(2):168-82. PubMed ID: 10196447 [TBL] [Abstract][Full Text] [Related]
15. Independent changes of intracellular calcium and pH in identified leech glial cells. Deitmer JW; Schneider HP; Munsch T Glia; 1993 Apr; 7(4):299-306. PubMed ID: 8391515 [TBL] [Abstract][Full Text] [Related]
16. Types and activities of voltage-operated calcium channels change during development of rat pituitary neurointermediate lobe. Beatty DM; Sands SA; Morris SJ; Chronwall BM Int J Dev Neurosci; 1996 Aug; 14(5):597-612. PubMed ID: 8930691 [TBL] [Abstract][Full Text] [Related]
17. Ca2+ currents in central insect neurons: electrophysiological and pharmacological properties. Wicher D; Penzlin H J Neurophysiol; 1997 Jan; 77(1):186-99. PubMed ID: 9120560 [TBL] [Abstract][Full Text] [Related]
18. Calcium transients in identified leech glial cells in situ evoked by high potassium concentrations and 5-hydroxytryptamine. Munsch T; Deitmer JW J Exp Biol; 1992 Jun; 167():251-65. PubMed ID: 1634865 [TBL] [Abstract][Full Text] [Related]
19. Different spatial patterns of [Ca2+] increase caused by N- and L-type Ca2+ channel activation in frog olfactory bulb neurones. Bischofberger J; Schild D J Physiol; 1995 Sep; 487 ( Pt 2)(Pt 2):305-17. PubMed ID: 8558465 [TBL] [Abstract][Full Text] [Related]