These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Maintenance of Fura-2 fluorescence in glial cells and neurons of the leech central nervous system. Munsch T; Deitmer JW J Neurosci Methods; 1995 Apr; 57(2):195-204. PubMed ID: 7609583 [TBL] [Abstract][Full Text] [Related]
25. Voltage inactivation of Ca2+ entry and secretion associated with N- and P/Q-type but not L-type Ca2+ channels of bovine chromaffin cells. Villarroya M; Olivares R; Ruíz A; Cano-Abad MF; de Pascual R; Lomax RB; López MG; Mayorgas I; Gandía L; García AG J Physiol; 1999 Apr; 516 ( Pt 2)(Pt 2):421-32. PubMed ID: 10087342 [TBL] [Abstract][Full Text] [Related]
26. Evidence for the uptake of neuronally derived choline by glial cells in the leech central nervous system. Wuttke WA; Pentreath VW J Physiol; 1990 Jan; 420():387-408. PubMed ID: 2324991 [TBL] [Abstract][Full Text] [Related]
27. Nanosecond electric pulses: a novel stimulus for triggering Ca2+ influx into chromaffin cells via voltage-gated Ca2+ channels. Craviso GL; Choe S; Chatterjee P; Chatterjee I; Vernier PT Cell Mol Neurobiol; 2010 Nov; 30(8):1259-65. PubMed ID: 21080060 [TBL] [Abstract][Full Text] [Related]
28. Intracellular acidification of the leech giant glial cell evoked by glutamate and aspartate. Deitmer JW; Schneider HP Glia; 1997 Feb; 19(2):111-22. PubMed ID: 9034828 [TBL] [Abstract][Full Text] [Related]
29. Effects of glutamatergic agonists and antagonists on membrane potential and intracellular Na+ activity of leech glial and nerve cells. Dörner R; Zens M; Schlue WR Brain Res; 1994 Nov; 665(1):47-53. PubMed ID: 7882017 [TBL] [Abstract][Full Text] [Related]
30. Activation of AMPA/kainate receptors but not acetylcholine receptors causes Mg2+ influx into Retzius neurones of the leech Hirudo medicinalis. Muller A; Gunzel D; Schlue WR J Gen Physiol; 2003 Dec; 122(6):727-39. PubMed ID: 14638932 [TBL] [Abstract][Full Text] [Related]
36. Characterization of a P-type calcium current in a crayfish motoneuron and its selective modulation by impulse activity. Hong SJ; Lnenicka GA J Neurophysiol; 1997 Jan; 77(1):76-85. PubMed ID: 9120598 [TBL] [Abstract][Full Text] [Related]
37. Properties of the voltage-gated calcium channels mediating dopamine and acetylcholine release from the isolated rat retina. Tamura N; Yokotani K; Okuma Y; Okada M; Ueno H; Osumi Y Brain Res; 1995 Apr; 676(2):363-70. PubMed ID: 7614007 [TBL] [Abstract][Full Text] [Related]
38. Functional dependence of Ca(2+)-activated K+ current on L- and N-type Ca2+ channels: differences between chicken sympathetic and parasympathetic neurons suggest different regulatory mechanisms. Wisgirda ME; Dryer SE Proc Natl Acad Sci U S A; 1994 Mar; 91(7):2858-62. PubMed ID: 8146200 [TBL] [Abstract][Full Text] [Related]
39. Distinct mechanisms for activation of Cl- and K+ currents by Ca2+ from different sources in mouse sympathetic neurones. Martínez-Pinna J; McLachlan EM; Gallego R J Physiol; 2000 Sep; 527 Pt 2(Pt 2):249-64. PubMed ID: 10970427 [TBL] [Abstract][Full Text] [Related]
40. Time-resolved changes in intracellular calcium following depolarization of rat brain synaptosomes. Lentzner A; Bykov V; Bartschat DK J Physiol; 1992 May; 450():613-28. PubMed ID: 1331429 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]