These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 8575108)

  • 41. Differential effects of acetylcholine, nitric oxide and levcromakalim on smooth muscle membrane potential and tone in the rabbit basilar artery.
    Plane F; Garland CJ
    Br J Pharmacol; 1993 Oct; 110(2):651-6. PubMed ID: 8242238
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interactions between neuropeptide Y and the adenylate cyclase pathway in rat mesenteric small arteries: role of membrane potential.
    Prieto D; Buus C; Mulvany MJ; Nilsson H
    J Physiol; 1997 Jul; 502 ( Pt 2)(Pt 2):281-92. PubMed ID: 9263910
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Preservation of vascular function in rat mesenteric resistance arteries following cold storage, studied by small vessel myography.
    McIntyre CA; Williams BC; Lindsay RM; McKnight JA; Hadoke PW
    Br J Pharmacol; 1998 Apr; 123(8):1555-60. PubMed ID: 9605561
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evidence that different mechanisms underlie smooth muscle relaxation to nitric oxide and nitric oxide donors in the rabbit isolated carotid artery.
    Plane F; Wiley KE; Jeremy JY; Cohen RA; Garland CJ
    Br J Pharmacol; 1998 Apr; 123(7):1351-8. PubMed ID: 9579730
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The electrophysiological effects of tetraphenylphosphonium on vascular smooth muscle.
    Zhang H; Bolton TB; Piekarska AE; McPherson GA
    Eur J Pharmacol; 1998 Apr; 347(1):119-23. PubMed ID: 9650857
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Functional role of charybdotoxin-sensitive K+ channels in the resting state of cerebral, coronary and mesenteric arteries of the dog.
    Asano M; Masuzawa-Ito K; Matsuda T; Suzuki Y; Oyama H; Shibuya M; Sugita K
    J Pharmacol Exp Ther; 1993 Dec; 267(3):1277-85. PubMed ID: 7505329
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evidence for involvement of both IKCa and SKCa channels in hyperpolarizing responses of the rat middle cerebral artery.
    McNeish AJ; Sandow SL; Neylon CB; Chen MX; Dora KA; Garland CJ
    Stroke; 2006 May; 37(5):1277-82. PubMed ID: 16556879
    [TBL] [Abstract][Full Text] [Related]  

  • 48. 4-aminopyridine-sensitive K+ channels contributes to NaHS-induced membrane hyperpolarization and relaxation in the rat coronary artery.
    Cheang WS; Wong WT; Shen B; Lau CW; Tian XY; Tsang SY; Yao X; Chen ZY; Huang Y
    Vascul Pharmacol; 2010; 53(3-4):94-8. PubMed ID: 20430111
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Levcromakalim-induced modulation of membrane potassium currents, intracellular calcium and mechanical activity in rat mesenteric artery.
    Criddle DN; Greenwood IA; Weston AH
    Naunyn Schmiedebergs Arch Pharmacol; 1994 Apr; 349(4):422-30. PubMed ID: 8058114
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ionic currents in single smooth muscle cells of the canine renal artery.
    Gelband CH; Hume JR
    Circ Res; 1992 Oct; 71(4):745-58. PubMed ID: 1381293
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enhancement of voltage-gated K+ channels and depression of voltage-gated Ca2+ channels are involved in quercetin-induced vasorelaxation in rat coronary artery.
    Hou X; Liu Y; Niu L; Cui L; Zhang M
    Planta Med; 2014 Apr; 80(6):465-72. PubMed ID: 24710898
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Calcium modulation of vascular smooth muscle ATP-sensitive K(+) channels: role of protein phosphatase-2B.
    Wilson AJ; Jabr RI; Clapp LH
    Circ Res; 2000 Nov; 87(11):1019-25. PubMed ID: 11090547
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electrical and mechanical responses of rat middle cerebral arteries to reduced PO2 and prostacyclin.
    Lombard JH; Liu Y; Fredricks KT; Bizub DM; Roman RJ; Rusch NJ
    Am J Physiol; 1999 Feb; 276(2):H509-16. PubMed ID: 9950852
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Relaxation induced by acetylcholine involves endothelium-derived hyperpolarizing factor in 2-kidney 1-clip hypertensive rat carotid arteries.
    Sendão Oliveira AP; Bendhack LM
    Pharmacology; 2004 Dec; 72(4):231-9. PubMed ID: 15539883
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inhibition of vascular smooth muscle inward-rectifier K
    Tykocki NR; Bonev AD; Longden TA; Heppner TJ; Nelson MT
    Am J Physiol Renal Physiol; 2017 May; 312(5):F836-F847. PubMed ID: 28148533
    [TBL] [Abstract][Full Text] [Related]  

  • 56. NaHS relaxes rat cerebral artery in vitro via inhibition of l-type voltage-sensitive Ca2+ channel.
    Tian XY; Wong WT; Sayed N; Luo J; Tsang SY; Bian ZX; Lu Y; Cheang WS; Yao X; Chen ZY; Huang Y
    Pharmacol Res; 2012 Feb; 65(2):239-46. PubMed ID: 22133671
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sympathetic control of arterial membrane potential by ATP-sensitive K(+)-channels.
    Goto K; Fujii K; Abe I; Fujishima M
    Hypertension; 2000 Jan; 35(1 Pt 2):379-84. PubMed ID: 10642328
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrophysiological effects of endothelin-1 and their relationship to contraction in rat renal arterial smooth muscle.
    Betts LC; Kozlowski RZ
    Br J Pharmacol; 2000 Jun; 130(4):787-96. PubMed ID: 10864884
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regulation of membrane potential and diameter by voltage-dependent K+ channels in rabbit myogenic cerebral arteries.
    Knot HJ; Nelson MT
    Am J Physiol; 1995 Jul; 269(1 Pt 2):H348-55. PubMed ID: 7631867
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Smooth muscle membrane potential modulates endothelium-dependent relaxation of rat basilar artery via myo-endothelial gap junctions.
    Allen T; Iftinca M; Cole WC; Plane F
    J Physiol; 2002 Dec; 545(3):975-86. PubMed ID: 12482900
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.