These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 8575267)
61. Expression and purification of short hydrophobic elastin-like polypeptides with maltose-binding protein as a solubility tag. Bataille L; Dieryck W; Hocquellet A; Cabanne C; Bathany K; Lecommandoux S; Garbay B; Garanger E Protein Expr Purif; 2015 Jun; 110():165-71. PubMed ID: 25819942 [TBL] [Abstract][Full Text] [Related]
62. Elastin as a self-organizing biomaterial: use of recombinantly expressed human elastin polypeptides as a model for investigations of structure and self-assembly of elastin. Keeley FW; Bellingham CM; Woodhouse KA Philos Trans R Soc Lond B Biol Sci; 2002 Feb; 357(1418):185-9. PubMed ID: 11911775 [TBL] [Abstract][Full Text] [Related]
64. Fibril formation by pH and temperature responsive silk-elastin block copolymers. Golinska MD; Pham TT; Werten MW; de Wolf FA; Cohen Stuart MA; van der Gucht J Biomacromolecules; 2013 Jan; 14(1):48-55. PubMed ID: 23214439 [TBL] [Abstract][Full Text] [Related]
65. Mechanistic insights into elastin degradation by pseudolysin, the major virulence factor of the opportunistic pathogen Pseudomonas aeruginosa. Yang J; Zhao HL; Ran LY; Li CY; Zhang XY; Su HN; Shi M; Zhou BC; Chen XL; Zhang YZ Sci Rep; 2015 Apr; 5():9936. PubMed ID: 25905792 [TBL] [Abstract][Full Text] [Related]
66. Multi-scale characterization of thermoresponsive dendritic elastin-like peptides. Zhou M; Shmidov Y; Matson JB; Bitton R Colloids Surf B Biointerfaces; 2017 May; 153():141-151. PubMed ID: 28236790 [TBL] [Abstract][Full Text] [Related]
67. Sequence and domain arrangements influence mechanical properties of elastin-like polymeric elastomers. Miao M; Sitarz E; Bellingham CM; Won E; Muiznieks LD; Keeley FW Biopolymers; 2013 Jun; 99(6):392-407. PubMed ID: 23529691 [TBL] [Abstract][Full Text] [Related]
68. Elastin: relation of protein and gene structure to disease. Rosenbloom J Lab Invest; 1984 Dec; 51(6):605-23. PubMed ID: 6150137 [TBL] [Abstract][Full Text] [Related]
69. Differential scanning calorimetry study of the hydrophobic hydration of the elastin-based polypentapeptide, poly(VPGVG), from deficiency to excess of water. Rodríguez-Cabello JC; Alonso M; Pérez T; Herguedas MM Biopolymers; 2000 Oct; 54(4):282-8. PubMed ID: 10867636 [TBL] [Abstract][Full Text] [Related]
70. Mechanochemical coupling in synthetic polypeptides by modulation of an inverse temperature transition. Urry DW; Haynes B; Zhang H; Harris RD; Prasad KU Proc Natl Acad Sci U S A; 1988 May; 85(10):3407-11. PubMed ID: 2897120 [TBL] [Abstract][Full Text] [Related]
71. Conferment of folding ability to a naturally unfolded apocytochrome c through introduction of hydrophobic amino acid residues. Yamanaka M; Masanari M; Sambongi Y Biochemistry; 2011 Mar; 50(12):2313-20. PubMed ID: 21329369 [TBL] [Abstract][Full Text] [Related]
72. Engineering of betabellin 14D: disulfide-induced folding of a beta-sheet protein. Yan Y; Erickson BW Protein Sci; 1994 Jul; 3(7):1069-73. PubMed ID: 7920252 [TBL] [Abstract][Full Text] [Related]
73. The contribution of the residues from the main hydrophobic core of ribonuclease A to its pressure-folding transition state. Font J; Benito A; Lange R; Ribó M; Vilanova M Protein Sci; 2006 May; 15(5):1000-9. PubMed ID: 16597833 [TBL] [Abstract][Full Text] [Related]
74. The tyrosine corner: a feature of most Greek key beta-barrel proteins. Hemmingsen JM; Gernert KM; Richardson JS; Richardson DC Protein Sci; 1994 Nov; 3(11):1927-37. PubMed ID: 7703839 [TBL] [Abstract][Full Text] [Related]
75. Double-hydrophobic elastin-like polypeptides with added functional motifs: Self-assembly and cytocompatibility. Le DHT; Tsutsui Y; Sugawara-Narutaki A; Yukawa H; Baba Y; Ohtsuki C J Biomed Mater Res A; 2017 Sep; 105(9):2475-2484. PubMed ID: 28486777 [TBL] [Abstract][Full Text] [Related]
76. A 3(10)-helical pentapeptide in water: interplay of alpha,alpha-disubstituted amino acids and the central residue on structure formation. Wang J; McElheny D; Fu Y; Li G; Kim J; Zhou Z; Wu L; Keiderling TA; Hammer RP Biopolymers; 2009; 92(5):452-64. PubMed ID: 19489061 [TBL] [Abstract][Full Text] [Related]
77. Conformational modeling of elastin tetrapeptide Boc-Gly-Leu-Gly-Gly-NMe by molecular dynamics simulations with improvements to the thermalization procedure. Villani V; Tamburro AM J Biomol Struct Dyn; 1995 Jun; 12(6):1173-202. PubMed ID: 7669266 [TBL] [Abstract][Full Text] [Related]
78. Pressure effects on water-swollen elastin. A model for hydrophobic interactions in proteins. French CJ; Gosline JM Biochim Biophys Acta; 1978 Dec; 537(2):386-95. PubMed ID: 728452 [TBL] [Abstract][Full Text] [Related]
79. Stepwise Mechanism of Temperature-Dependent Coacervation of the Elastin-like Peptide Analogue Dimer, (C(WPGVG) Tatsubo D; Suyama K; Miyazaki M; Maeda I; Nose T Biochemistry; 2018 Mar; 57(10):1582-1590. PubMed ID: 29388768 [TBL] [Abstract][Full Text] [Related]
80. The folding of an enzyme. VI. The folding pathway of barnase: comparison with theoretical models. Serrano L; Matouschek A; Fersht AR J Mol Biol; 1992 Apr; 224(3):847-59. PubMed ID: 1569561 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]