These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 8576072)

  • 1. Control of hemA expression in Rhodobacter sphaeroides 2.4.1: regulation through alterations in the cellular redox state.
    Zeilstra-Ryalls JH; Kaplan S
    J Bacteriol; 1996 Feb; 178(4):985-93. PubMed ID: 8576072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerobic and anaerobic regulation in Rhodobacter sphaeroides 2.4.1: the role of the fnrL gene.
    Zeilstra-Ryalls JH; Kaplan S
    J Bacteriol; 1995 Nov; 177(22):6422-31. PubMed ID: 7592416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen-insensitive synthesis of the photosynthetic membranes of Rhodobacter sphaeroides: a mutant histidine kinase.
    Eraso JM; Kaplan S
    J Bacteriol; 1995 May; 177(10):2695-706. PubMed ID: 7751278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. prrA, a putative response regulator involved in oxygen regulation of photosynthesis gene expression in Rhodobacter sphaeroides.
    Eraso JM; Kaplan S
    J Bacteriol; 1994 Jan; 176(1):32-43. PubMed ID: 8282708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A redox-responsive pathway for aerobic regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1.
    O'Gara JP; Eraso JM; Kaplan S
    J Bacteriol; 1998 Aug; 180(16):4044-50. PubMed ID: 9696749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for the role of redox carriers in photosynthesis gene expression and carotenoid biosynthesis in Rhodobacter sphaeroides 2.4.1.
    O'Gara JP; Kaplan S
    J Bacteriol; 1997 Mar; 179(6):1951-61. PubMed ID: 9068641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. appA, a novel gene encoding a trans-acting factor involved in the regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1.
    Gomelsky M; Kaplan S
    J Bacteriol; 1995 Aug; 177(16):4609-18. PubMed ID: 7642486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the fnrL gene and its function in Rhodobacter capsulatus.
    Zeilstra-Ryalls JH; Gabbert K; Mouncey NJ; Kaplan S; Kranz RG
    J Bacteriol; 1997 Dec; 179(23):7264-73. PubMed ID: 9393689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of hemA expression in Rhodobacter sphaeroides 2.4.1: effect of a transposon insertion in the hbdA gene.
    Fales L; Kryszak L; Zeilstra-Ryalls J
    J Bacteriol; 2001 Mar; 183(5):1568-76. PubMed ID: 11160087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 5-Aminolevulinic acid availability and control of spectral complex formation in hemA and hemT mutants of Rhodobacter sphaeroides.
    Neidle EL; Kaplan S
    J Bacteriol; 1993 Apr; 175(8):2304-13. PubMed ID: 8468291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of the Rhodobacter sphaeroides hemA and hemT genes, encoding two 5-aminolevulinic acid synthase isozymes.
    Neidle EL; Kaplan S
    J Bacteriol; 1993 Apr; 175(8):2292-303. PubMed ID: 8468290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of 5-aminolevulinic acid synthesis in Rhodobacter sphaeroides 2.4.1: the genetic basis of mutant H-5 auxotrophy.
    Zeilstra-Ryalls JH; Kaplan S
    J Bacteriol; 1995 May; 177(10):2760-8. PubMed ID: 7751286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thioredoxin is involved in oxygen-regulated formation of the photosynthetic apparatus of Rhodobacter sphaeroides.
    Pasternak C; Haberzettl K; Klug G
    J Bacteriol; 1999 Jan; 181(1):100-6. PubMed ID: 9864318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the Rhodobacter sphaeroides 2.4.1 hemA gene by PrrA and FnrL.
    Ranson-Olson B; Zeilstra-Ryalls JH
    J Bacteriol; 2008 Oct; 190(20):6769-78. PubMed ID: 18689483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From redox flow to gene regulation: role of the PrrC protein of Rhodobacter sphaeroides 2.4.1.
    Eraso JM; Kaplan S
    Biochemistry; 2000 Feb; 39(8):2052-62. PubMed ID: 10684655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of regulatory mutants in photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1 and partial complementation of a PrrB mutant by the HupT histidine-kinase.
    Gomelsky M; Kaplan S
    Microbiology (Reading); 1995 Aug; 141 ( Pt 8)():1805-1819. PubMed ID: 7551045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Q gene of Rhodobacter sphaeroides: its role in puf operon expression and spectral complex assembly.
    Gong L; Lee JK; Kaplan S
    J Bacteriol; 1994 May; 176(10):2946-61. PubMed ID: 8188596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localized transposon Tn5 mutagenesis of the photosynthetic gene cluster of Rhodobacter sphaeroides.
    Coomber SA; Chaudhri M; Connor A; Britton G; Hunter CN
    Mol Microbiol; 1990 Jun; 4(6):977-89. PubMed ID: 2170816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleotide sequence and transcriptional analysis of the flanking region of the gene (spb) for the trans-acting factor that controls light-mediated expression of the puf operon in Rhodobacter sphaeroides.
    Mizoguchi H; Masuda T; Nishimura K; Shimada H; Ohta H; Shioi Y; Takamiya K
    Plant Cell Physiol; 1997 May; 38(5):558-67. PubMed ID: 9210332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A global signal transduction system regulates aerobic and anaerobic CO2 fixation in Rhodobacter sphaeroides.
    Qian Y; Tabita FR
    J Bacteriol; 1996 Jan; 178(1):12-8. PubMed ID: 8550404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.