These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 857611)

  • 21. Functional aspects of myogenic vascular control.
    Mellander S
    J Hypertens Suppl; 1989 Sep; 7(4):S21-30; discussion S31. PubMed ID: 2553897
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Changes in precapillary resistance in skeletal muscle vessels studied by intravital microscopy.
    Eriksson E; Lisander B
    Acta Physiol Scand; 1972 Mar; 84(3):295-305. PubMed ID: 5019029
    [No Abstract]   [Full Text] [Related]  

  • 23. Myogenic vascular regulation in skeletal muscle in vivo is not dependent of endothelium-derived nitric oxide.
    Ekelund U; Björnberg J; Grände PO; Albert U; Mellander S
    Acta Physiol Scand; 1992 Feb; 144(2):199-207. PubMed ID: 1575052
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of endothelium sensitivity to shear stress in noradrenaline-induced constriction of feline femoral arterial bed under constant flow and constant pressure perfusions.
    Kartamyshev SP; Balashov SA; Melkumyants AM
    J Vasc Res; 2007; 44(1):1-10. PubMed ID: 17148940
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of vasodilation and vasoconstriction on microvascular pressures in skeletal muscle.
    Ballard ST; Hill MA; Meininger GA
    Microcirc Endothelium Lymphatics; 1991; 7(1-3):109-31. PubMed ID: 1762606
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Arterial pressure-blood flow relations during limb elevation in man.
    Nielsen HV
    Acta Physiol Scand; 1983 Aug; 118(4):405-13. PubMed ID: 6637544
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Myogenic responsiveness in rat hindquarter vessels during constant-flow and constant-pressure perfusion in vitro; effects of various potassium concentrations and of endothelial nitrous oxide blockade.
    Johnsson E; Folkow B; Karlström G
    Acta Physiol Scand; 1991 Jul; 142(3):319-28. PubMed ID: 1927547
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of vascular myogenic tone and reactivity by calcium antagonists.
    Nordlander MI
    J Hypertens Suppl; 1989 Sep; 7(4):S141-5; discussion S146. PubMed ID: 2681591
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of coronary diameter by myogenic mechanisms in arterial microvessels greater than 100 microns in diameter.
    Rajagopalan S; Dube S; Canty JM
    Am J Physiol; 1995 Feb; 268(2 Pt 2):H788-93. PubMed ID: 7864206
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microvascular pressure distribution in skeletal muscle and the effect of vasodilation.
    Fronek K; Zweifach BW
    Am J Physiol; 1975 Mar; 228(3):791-6. PubMed ID: 1115244
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrated myogenic and metabolic control of vascular tone in skeletal muscle during autoregulation of blood flow.
    Borgström P; Gestrelius S
    Microvasc Res; 1987 May; 33(3):353-76. PubMed ID: 3613984
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 'Distensibility' of the papaverine-relaxed vascular bed in human subcutaneous tissue.
    Henriksen O; Kristensen JK
    Acta Physiol Scand; 1979 Jun; 106(2):109-13. PubMed ID: 506757
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Augmented vasoconstrictor response to changes in vascular transmural pressure in patients with essential arterial hypertension.
    Henriksen O; Skagen K; Amtorp O; Hartling O
    Acta Physiol Scand; 1981 Jul; 112(3):323-9. PubMed ID: 7293799
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of the microcirculation to skeletal muscle during shock.
    Garrison RN; Cryer HM
    Prog Clin Biol Res; 1989; 299():43-52. PubMed ID: 2657799
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Stretching of the veins of skeletal muscles following changes in the level of hydrostatic venous pressure].
    Dvoretskiĭ DP; Kudriashov IuA; Sultanov GF; Tkachenko BI
    Fiziol Zh SSSR Im I M Sechenova; 1983 Jan; 69(1):100-5. PubMed ID: 6825878
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Reactions of the volume vessels of skeletal muscles to adrenergic stimulation at different levels of venous pressure].
    Kudrashov IuA
    Fiziol Zh SSSR Im I M Sechenova; 1976 May; 62(5):711-8. PubMed ID: 1278550
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sympathetic alpha-adrenergic control of large-bore arterial vessels, arterioles and veins, and of capillary pressure and fluid exchange in whole-organ cat skeletal muscle.
    Maspers M; Björnberg J; Grände PO; Mellander S
    Acta Physiol Scand; 1990 Apr; 138(4):509-21. PubMed ID: 2353580
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Consistent component of spatial unevenness of capillary blood flow in a micromodule of skeletal muscle].
    Levtov VA; Shustova NIa; Regirer SA; Shadrina NKh; Levkovich IuI
    Fiziol Zh SSSR Im I M Sechenova; 1986 Sep; 72(9):1301-9. PubMed ID: 3781059
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vanilloid receptor TRPV1, sensory C-fibers, and vascular autoregulation: a novel mechanism involved in myogenic constriction.
    Scotland RS; Chauhan S; Davis C; De Felipe C; Hunt S; Kabir J; Kotsonis P; Oh U; Ahluwalia A
    Circ Res; 2004 Nov; 95(10):1027-34. PubMed ID: 15499026
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Effect of potassium ions on the reactions of resistive and capacitive vessels in the skeletal muscles and intestines].
    Vil'de LA
    Fiziol Zh SSSR Im I M Sechenova; 1975 Oct; 61(10):1559-63. PubMed ID: 1204868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.