BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 8576234)

  • 21. Role of Hsp90 and ATP in modulating apyrase activity and firefly luciferase kinetics.
    Kirillova MA; Ranjan R; Esimbekova EN; Kratasyuk VA
    Int J Biol Macromol; 2019 Jun; 131():691-696. PubMed ID: 30902720
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conditions of forming protein complexes with GroEL can influence the mechanism of chaperonin-assisted refolding.
    Gorovits BM; Horowitz PM
    J Biol Chem; 1997 Jan; 272(1):32-5. PubMed ID: 8995221
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Overexpression of yeast Hsp110 homolog Sse1p suppresses ydj1-151 thermosensitivity and restores Hsp90-dependent activity.
    Goeckeler JL; Stephens A; Lee P; Caplan AJ; Brodsky JL
    Mol Biol Cell; 2002 Aug; 13(8):2760-70. PubMed ID: 12181344
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state.
    Lee GJ; Roseman AM; Saibil HR; Vierling E
    EMBO J; 1997 Feb; 16(3):659-71. PubMed ID: 9034347
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cyclophilin-promoted folding of mouse dihydrofolate reductase does not include the slow conversion of the late-folding intermediate to the active enzyme.
    von Ahsen O; Lim JH; Caspers P; Martin F; Schönfeld HJ; Rassow J; Pfanner N
    J Mol Biol; 2000 Mar; 297(3):809-18. PubMed ID: 10731431
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction of a Novel Chaperone PhLP2A With the Heat Shock Protein Hsp90.
    Krzemień-Ojak Ł; Góral A; Joachimiak E; Filipek A; Fabczak H
    J Cell Biochem; 2017 Feb; 118(2):420-429. PubMed ID: 27496612
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network.
    Veinger L; Diamant S; Buchner J; Goloubinoff P
    J Biol Chem; 1998 May; 273(18):11032-7. PubMed ID: 9556585
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A monomeric variant of GroEL binds nucleotides but is inactive as a molecular chaperone.
    White ZW; Fisher KE; Eisenstein E
    J Biol Chem; 1995 Sep; 270(35):20404-9. PubMed ID: 7657615
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of the 90-kDa heat-shock protein and its associated cohorts in stabilizing the heme-regulated eIF-2alpha kinase in reticulocyte lysates during heat stress.
    Xu Z; Pal JK; Thulasiraman V; Hahn HP; Chen JJ; Matts RL
    Eur J Biochem; 1997 Jun; 246(2):461-70. PubMed ID: 9208939
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two distinct mechanisms operate in the reactivation of heat-denatured proteins by the mitochondrial Hsp70/Mdj1p/Yge1p chaperone system.
    Kubo Y; Tsunehiro T; Nishikawa S; Nakai M; Ikeda E; Toh-e A; Morishima N; Shibata T; Endo T
    J Mol Biol; 1999 Feb; 286(2):447-64. PubMed ID: 9973563
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prevention of protein denaturation under heat stress by the chaperonin Hsp60.
    Martin J; Horwich AL; Hartl FU
    Science; 1992 Nov; 258(5084):995-8. PubMed ID: 1359644
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Principles of chaperone-assisted protein folding: differences between in vitro and in vivo mechanisms.
    Frydman J; Hartl FU
    Science; 1996 Jun; 272(5267):1497-502. PubMed ID: 8633246
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Substrate transfer from the chaperone Hsp70 to Hsp90.
    Wegele H; Wandinger SK; Schmid AB; Reinstein J; Buchner J
    J Mol Biol; 2006 Feb; 356(3):802-11. PubMed ID: 16403523
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Significant hydrogen exchange protection in GroEL-bound DHFR is maintained during iterative rounds of substrate cycling.
    Gross M; Robinson CV; Mayhew M; Hartl FU; Radford SE
    Protein Sci; 1996 Dec; 5(12):2506-13. PubMed ID: 8976559
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of regions in the dihydrofolate reductase structure that interact with the molecular chaperonin GroEL.
    Clark AC; Hugo E; Frieden C
    Biochemistry; 1996 May; 35(18):5893-901. PubMed ID: 8639551
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein.
    Murata S; Minami Y; Minami M; Chiba T; Tanaka K
    EMBO Rep; 2001 Dec; 2(12):1133-8. PubMed ID: 11743028
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Atomistic simulations and network-based modeling of the Hsp90-Cdc37 chaperone binding with Cdk4 client protein: A mechanism of chaperoning kinase clients by exploiting weak spots of intrinsically dynamic kinase domains.
    Czemeres J; Buse K; Verkhivker GM
    PLoS One; 2017; 12(12):e0190267. PubMed ID: 29267381
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel 30 kDa protein possessing ATP-binding and chaperone activities.
    Itoh H; Tashima Y
    Biochem J; 1997 Sep; 326 ( Pt 2)(Pt 2):567-72. PubMed ID: 9291133
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Xenopus small heat shock proteins, Hsp30C and Hsp30D, maintain heat- and chemically denatured luciferase in a folding-competent state.
    Abdulle R; Mohindra A; Fernando P; Heikkila JJ
    Cell Stress Chaperones; 2002 Jan; 7(1):6-16. PubMed ID: 11892988
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Artificial duplication of the R67 dihydrofolate reductase gene to create protein asymmetry. Effects on protein activity and folding.
    Zhuang P; Yin M; Holland JC; Peterson CB; Howell EE
    J Biol Chem; 1993 Oct; 268(30):22672-9. PubMed ID: 8226776
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.