These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 8576483)
41. A data adaptive reprojection technique for MR angiography. Korosec FR; Weber DM; Mistretta CA; Turski PA; Bernstein MA Magn Reson Med; 1992 Apr; 24(2):262-74. PubMed ID: 1569866 [TBL] [Abstract][Full Text] [Related]
42. Effects of magnetic resonance image interpolation on the results of texture-based pattern classification: a phantom study. Mayerhoefer ME; Szomolanyi P; Jirak D; Berg A; Materka A; Dirisamer A; Trattnig S Invest Radiol; 2009 Jul; 44(7):405-11. PubMed ID: 19465863 [TBL] [Abstract][Full Text] [Related]
43. Segmentation of artifacts and anatomy in CT metal artifact reduction. Karimi S; Cosman P; Wald C; Martz H Med Phys; 2012 Oct; 39(10):5857-68. PubMed ID: 23039624 [TBL] [Abstract][Full Text] [Related]
44. [The detailed imaging of vessels in MR angiography via projections from irregularly restricted data sets]. Klose U; Petersen D Rofo; 1992 May; 156(5):482-6. PubMed ID: 1596554 [TBL] [Abstract][Full Text] [Related]
45. A vessel segmentation method for multi-modality angiographic images based on multi-scale filtering and statistical models. Lu P; Xia J; Li Z; Xiong J; Yang J; Zhou S; Wang L; Chen M; Wang C Biomed Eng Online; 2016 Nov; 15(1):120. PubMed ID: 27825346 [TBL] [Abstract][Full Text] [Related]
46. A fast forward projection using multithreads for multirays on GPUs in medical image reconstruction. Chou CY; Chuo YY; Hung Y; Wang W Med Phys; 2011 Jul; 38(7):4052-65. PubMed ID: 21859004 [TBL] [Abstract][Full Text] [Related]
47. Area weighted convolutional interpolation for data reprojection in single photon emission computed tomography. Schwinger RB; Cool SL; King MA Med Phys; 1986; 13(3):350-3. PubMed ID: 3487711 [TBL] [Abstract][Full Text] [Related]
48. Initial experience with helical CT and 3D reconstruction in therapeutic planning of cerebral AVMs: comparison with 3D time-of-flight MRA and digital subtraction angiography. Tanaka H; Numaguchi Y; Konno S; Shrier DA; Shibata DK; Patel U J Comput Assist Tomogr; 1997; 21(5):811-7. PubMed ID: 9294581 [TBL] [Abstract][Full Text] [Related]
49. Time-of-Arrival Parametric Maps and Virtual Bolus Images Derived From Contrast-Enhanced Time-Resolved Radial Magnetic Resonance Angiography Improve the Display of Brain Arteriovenous Malformation Vascular Anatomy. Schubert T; Wu Y; Johnson KM; Wieben O; Maksimovic J; Mistretta C; Turski P Invest Radiol; 2016 Nov; 51(11):706-713. PubMed ID: 27760058 [TBL] [Abstract][Full Text] [Related]
50. A MAP-based image interpolation method via Viterbi decoding of Markov chains of interpolation functions. Vedadi F; Shirani S IEEE Trans Image Process; 2014 Jan; 23(1):424-38. PubMed ID: 24239997 [TBL] [Abstract][Full Text] [Related]
51. Virtual radiographs computed from TACT volume data as a gold standard for image registration prior to subtraction. Lehmann TM; Hemler PF; Webber RL Dentomaxillofac Radiol; 2002 May; 31(3):187-92. PubMed ID: 12058267 [TBL] [Abstract][Full Text] [Related]
52. Analysis of enlarged images using time-of-flight magnetic resonance angiography, computed tomography, and conventional angiography. Heo YC; Lee HK; Yang HJ; Cho JH J Med Syst; 2014 Dec; 38(12):146. PubMed ID: 25352491 [TBL] [Abstract][Full Text] [Related]
53. Interpolation algorithms for digital mammography systems with multiple detectors. Liu H; Wang G; Chen J; Fajardo LL Acad Radiol; 1999 Mar; 6(3):170-5. PubMed ID: 10898036 [TBL] [Abstract][Full Text] [Related]
54. Gray-scale skeletonization of small vessels in magnetic resonance angiography. Yim PJ; Choyke PL; Summers RM IEEE Trans Med Imaging; 2000 Jun; 19(6):568-76. PubMed ID: 11026460 [TBL] [Abstract][Full Text] [Related]
55. Reconstruction of 3D ultrasound images based on Cyclic Regularized Savitzky-Golay filters. Toonkum P; Suwanwela NC; Chinrungrueng C Ultrasonics; 2011 Feb; 51(2):136-47. PubMed ID: 20696448 [TBL] [Abstract][Full Text] [Related]
56. Normalized metal artifact reduction (NMAR) in computed tomography. Meyer E; Raupach R; Lell M; Schmidt B; Kachelriess M Med Phys; 2010 Oct; 37(10):5482-93. PubMed ID: 21089784 [TBL] [Abstract][Full Text] [Related]
57. A novel metal artifact reducing method for cone-beam CT based on three approximately orthogonal projections. Wang Q; Li L; Zhang L; Chen Z; Kang K Phys Med Biol; 2013 Jan; 58(1):1-17. PubMed ID: 23221023 [TBL] [Abstract][Full Text] [Related]
58. Reduction of computed tomography metal artifacts due to the Fletcher-Suit applicator in gynecology patients receiving intracavitary brachytherapy. Roeske JC; Lund C; Pelizzari CA; Pan X; Mundt AJ Brachytherapy; 2003; 2(4):207-14. PubMed ID: 15062128 [TBL] [Abstract][Full Text] [Related]
59. Development of a cone angle weighted three-dimensional image reconstruction algorithm to reduce cone-beam artefacts. Gomi T; Koshida K; Miyati T Dentomaxillofac Radiol; 2006 Nov; 35(6):398-406. PubMed ID: 17082329 [TBL] [Abstract][Full Text] [Related]
60. Improvement of the diffusion-weighted images acquired with radial trajectories using projection data regeneration. Han Y; Hwang J; Chung JY; Yun S; Park H J Magn Reson Imaging; 2007 Sep; 26(3):799-804. PubMed ID: 17685419 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]