These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 8576698)

  • 1. The influence of optimization target selection on the structure of arterial tree models generated by constrained constructive optimization.
    Schreiner W; Neumann F; Neumann M; End A; Roedler SM; Aharinejad S
    J Gen Physiol; 1995 Oct; 106(4):583-99. PubMed ID: 8576698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shear stress distribution in arterial tree models, generated by constrained constructive optimization.
    Schreiner W; Neumann F; Karch R; Neumann M; Roedler SM; End A
    J Theor Biol; 1999 May; 198(1):27-45. PubMed ID: 10329113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Introduction and advantage analysis of the stepwise method for the construction of vascular trees].
    Zhang Y; Xie H; Zhu K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Aug; 27(4):902-6. PubMed ID: 20842868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A three-dimensional model for arterial tree representation, generated by constrained constructive optimization.
    Karch R; Neumann F; Neumann M; Schreiner W
    Comput Biol Med; 1999 Jan; 29(1):19-38. PubMed ID: 10207653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer-optimization of vascular trees.
    Schreiner W; Buxbaum PF
    IEEE Trans Biomed Eng; 1993 May; 40(5):482-91. PubMed ID: 8225337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural quantification and bifurcation symmetry in arterial tree models generated by constrained constructive optimization.
    Schreiner W; Neumann F; Neumann M; End A; Müller MR
    J Theor Biol; 1996 May; 180(2):161-74. PubMed ID: 8763367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer generation of complex arterial tree models.
    Schreiner W
    J Biomed Eng; 1993 Mar; 15(2):148-50. PubMed ID: 8459695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional characteristics of optimized arterial tree models perfusing volumes of different thickness and shape.
    Karch R; Neumann F; Neumann M; Schreiner W
    J Vasc Res; 2000; 37(4):250-64. PubMed ID: 10965224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anatomical variability and functional ability of vascular trees modeled by constrained constructive optimization.
    Schreiner W; Neumann F; Neumann M; End A; Roedler SM
    J Theor Biol; 1997 Jul; 187(2):147-58. PubMed ID: 9237885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The branching angles in computer-generated optimized models of arterial trees.
    Schreiner W; Neumann M; Neumann F; Roedler SM; End A; Buxbaum P; Müller MR; Spieckermann P
    J Gen Physiol; 1994 Jun; 103(6):975-89. PubMed ID: 7931140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast blood-flow simulation for large arterial trees containing thousands of vessels.
    Muller A; Clarke R; Ho H
    Comput Methods Biomech Biomed Engin; 2017 Feb; 20(2):160-170. PubMed ID: 27376402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimized arterial trees supplying hollow organs.
    Schreiner W; Karch R; Neumann M; Neumann F; Szawlowski P; Roedler S
    Med Eng Phys; 2006 Jun; 28(5):416-29. PubMed ID: 16144769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limited bifurcation asymmetry in coronary arterial tree models generated by constrained constructive optimization.
    Schreiner W; Neumann F; Neumann M; Karch R; End A; Roedler SM
    J Gen Physiol; 1997 Feb; 109(2):129-40. PubMed ID: 9041443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Staged growth of optimized arterial model trees.
    Karch R; Neumann F; Neumann M; Schreiner W
    Ann Biomed Eng; 2000 May; 28(5):495-511. PubMed ID: 10925948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voronoi polyhedra analysis of optimized arterial tree models.
    Karch R; Neumann F; Neumann M; Szawlowski P; Schreiner W
    Ann Biomed Eng; 2003 May; 31(5):548-63. PubMed ID: 12757199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fractal properties of perfusion heterogeneity in optimized arterial trees: a model study.
    Karch R; Neumann F; Podesser BK; Neumann M; Szawlowski P; Schreiner W
    J Gen Physiol; 2003 Sep; 122(3):307-21. PubMed ID: 12913088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computational approach to generate concurrent arterial networks in vascular territories.
    Blanco PJ; de Queiroz RA; Feijóo RA
    Int J Numer Method Biomed Eng; 2013 May; 29(5):601-14. PubMed ID: 23576397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Silico Design of Heterogeneous Microvascular Trees Using Generative Adversarial Networks and Constrained Constructive Optimization.
    Pan Q; Shen H; Li P; Lai B; Jiang A; Huang W; Lu F; Peng H; Fang L; Kuebler WM; Pries AR; Ning G
    Microcirculation; 2024 Jul; 31(5):e12854. PubMed ID: 38690631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An anatomically detailed arterial network model for one-dimensional computational hemodynamics.
    Blanco PJ; Watanabe SM; Passos MA; Lemos PA; Feijóo RA
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):736-53. PubMed ID: 25347874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical validation of pulse wave propagation: effects of arterial length.
    He F
    Australas Phys Eng Sci Med; 2013 Dec; 36(4):423-9. PubMed ID: 24243535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.