BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 8577031)

  • 1. [Lysosomal hydrolases have specific conformational domains for acquisition of mannose-6-phosphate].
    Himeno M; Tanaka Y
    Nihon Rinsho; 1995 Dec; 53(12):2892-7. PubMed ID: 8577031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Several cooperating binding sites mediate the interaction of a lysosomal enzyme with phosphotransferase.
    Tikkanen R; Peltola M; Oinonen C; Rouvinen J; Peltonen L
    EMBO J; 1997 Nov; 16(22):6684-93. PubMed ID: 9362483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylation of arylsulphatase A occurs through multiple interactions with the UDP-N-acetylglucosamine-1-phosphotransferase proximal and distal to its retrieval site by the KDEL receptor.
    Dittmer F; von Figura K
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):729-36. PubMed ID: 10359658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mannose 6-phosphate-containing N-linked glycopeptide derived from lysosomal acid lipase is bound to MHC class II in B lymphoblastoid cell lines.
    Dustin ML; McCourt DW; Kornfeld S
    J Immunol; 1996 Mar; 156(5):1841-7. PubMed ID: 8596035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of UDP-N-acetylglucosamine-phosphotransferase-binding sites on the lysosomal proteases, cathepsins A, B, and D.
    Lukong KE; Elsliger MA; Mort JS; Potier M; Pshezhetsky AV
    Biochemistry; 1999 Jan; 38(1):73-80. PubMed ID: 9890884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of a lysosomal enzyme targeting signal in the secretory protein pepsinogen.
    Baranski TJ; Faust PL; Kornfeld S
    Cell; 1990 Oct; 63(2):281-91. PubMed ID: 2170024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mice lacking mannose 6-phosphate uncovering enzyme activity have a milder phenotype than mice deficient for N-acetylglucosamine-1-phosphotransferase activity.
    Boonen M; Vogel P; Platt KA; Dahms N; Kornfeld S
    Mol Biol Cell; 2009 Oct; 20(20):4381-9. PubMed ID: 19710420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel mutation in UDP-N-acetylglucosamine-1-phosphotransferase gamma subunit (GNPTAG) in two siblings with mucolipidosis type III alters a used glycosylation site.
    Tiede S; Cantz M; Raas-Rothschild A; Muschol N; Bürger F; Ullrich K; Braulke T
    Hum Mutat; 2004 Dec; 24(6):535. PubMed ID: 15532026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycosylation- and phosphorylation-dependent intracellular transport of lysosomal hydrolases.
    Pohl S; Marschner K; Storch S; Braulke T
    Biol Chem; 2009 Jul; 390(7):521-7. PubMed ID: 19426136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Receptor-mediated transport of acid hydrolases to lysosomes.
    Sly WS
    Curr Top Cell Regul; 1985; 26():27-38. PubMed ID: 3000696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lysosomal enzyme trafficking in mannose 6-phosphate receptor-positive mouse L-cells: demonstration of a steady state accumulation of phosphorylated acid hydrolases.
    Gabel CA; Foster SA
    J Cell Biol; 1986 Mar; 102(3):943-50. PubMed ID: 3005340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mannose 6-phosphate-independent targeting of lysosomal enzymes in I-cell disease B lymphoblasts.
    Glickman JN; Kornfeld S
    J Cell Biol; 1993 Oct; 123(1):99-108. PubMed ID: 8408210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steps in the phosphorylation of the high mannose oligosaccharides of lysosomal enzymes.
    Kornfeld S; Reitman ML; Varki A; Goldberg D; Gabel CA
    Ciba Found Symp; 1982; (92):138-56. PubMed ID: 6295719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lysosomal enzyme phosphorylation. II. Protein recognition determinants in either lobe of procathepsin D are sufficient for phosphorylation of both the amino and carboxyl lobe oligosaccharides.
    Cantor AB; Baranski TJ; Kornfeld S
    J Biol Chem; 1992 Nov; 267(32):23349-56. PubMed ID: 1331082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of the minimal lysosomal enzyme recognition domain in cathepsin D.
    Steet R; Lee WS; Kornfeld S
    J Biol Chem; 2005 Sep; 280(39):33318-23. PubMed ID: 16081416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mucolipidosis II is caused by mutations in GNPTA encoding the alpha/beta GlcNAc-1-phosphotransferase.
    Tiede S; Storch S; Lübke T; Henrissat B; Bargal R; Raas-Rothschild A; Braulke T
    Nat Med; 2005 Oct; 11(10):1109-12. PubMed ID: 16200072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple Domains of GlcNAc-1-phosphotransferase Mediate Recognition of Lysosomal Enzymes.
    van Meel E; Lee WS; Liu L; Qian Y; Doray B; Kornfeld S
    J Biol Chem; 2016 Apr; 291(15):8295-307. PubMed ID: 26833567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mannose-6-phosphate pathway: a review on its role in lysosomal function and dysfunction.
    Coutinho MF; Prata MJ; Alves S
    Mol Genet Metab; 2012 Apr; 105(4):542-50. PubMed ID: 22266136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for recognition of phosphodiester-containing lysosomal enzymes by the cation-independent mannose 6-phosphate receptor.
    Olson LJ; Peterson FC; Castonguay A; Bohnsack RN; Kudo M; Gotschall RR; Canfield WM; Volkman BF; Dahms NM
    Proc Natl Acad Sci U S A; 2010 Jul; 107(28):12493-8. PubMed ID: 20615935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abnormal lysosomal sorting with an enhanced secretion of cathepsin D precursor molecules bearing monoester phosphate groups.
    Faulhaber J; Fensom A; Hasilik A
    Eur J Cell Biol; 1998 Oct; 77(2):134-40. PubMed ID: 9840463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.