These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 8577246)
1. The Cryptococcus neoformans GAL7 gene and its use as an inducible promoter. Wickes BL; Edman JC Mol Microbiol; 1995 Jun; 16(6):1099-109. PubMed ID: 8577246 [TBL] [Abstract][Full Text] [Related]
2. Lactose metabolism and cellulase production in Hypocrea jecorina: the gal7 gene, encoding galactose-1-phosphate uridylyltransferase, is essential for growth on galactose but not for cellulase induction. Seiboth B; Hofmann G; Kubicek CP Mol Genet Genomics; 2002 Mar; 267(1):124-32. PubMed ID: 11919723 [TBL] [Abstract][Full Text] [Related]
3. Primary structure of the Saccharomyces cerevisiae GAL7 gene. Tajima M; Nogi Y; Fukasawa T Yeast; 1985 Sep; 1(1):67-77. PubMed ID: 2851900 [TBL] [Abstract][Full Text] [Related]
4. Galactose-Inducible promoters in Cryptococcus neoformans var. grubii. Baker LG; Lodge JK Methods Mol Biol; 2012; 845():211-26. PubMed ID: 22328377 [TBL] [Abstract][Full Text] [Related]
5. Three galactose inducible promoters for use in C. neoformans var. grubii. Ruff JA; Lodge JK; Baker LG Fungal Genet Biol; 2009 Jan; 46(1):9-16. PubMed ID: 18952189 [TBL] [Abstract][Full Text] [Related]
6. Cryptococcus neoformans differential gene expression detected in vitro and in vivo with green fluorescent protein. del Poeta M; Toffaletti DL; Rude TH; Sparks SD; Heitman J; Perfect JR Infect Immun; 1999 Apr; 67(4):1812-20. PubMed ID: 10085022 [TBL] [Abstract][Full Text] [Related]
7. UGE1 and UGE2 regulate the UDP-glucose/UDP-galactose equilibrium in Cryptococcus neoformans. Moyrand F; Lafontaine I; Fontaine T; Janbon G Eukaryot Cell; 2008 Dec; 7(12):2069-77. PubMed ID: 18820075 [TBL] [Abstract][Full Text] [Related]
8. Further analysis of the CAP59 locus of Cryptococcus neoformans: structure defined by forced expression and description of a new ribosomal protein-encoding gene. Chang YC; Wickes BL; Kwon-Chung KJ Gene; 1995 Dec; 167(1-2):179-83. PubMed ID: 8566774 [TBL] [Abstract][Full Text] [Related]
9. Isolation of conditional mutations in genes essential for viability of Cryptococcus neoformans. Ianiri G; Boyce KJ; Idnurm A Curr Genet; 2017 Jun; 63(3):519-530. PubMed ID: 27783209 [TBL] [Abstract][Full Text] [Related]
10. The galactokinase of Hypocrea jecorina is essential for cellulase induction by lactose but dispensable for growth on d-galactose. Seiboth B; Hartl L; Pail M; Fekete E; Karaffa L; Kubicek CP Mol Microbiol; 2004 Feb; 51(4):1015-25. PubMed ID: 14763977 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the glyceraldehyde-3-phosphate dehydrogenase gene [correction of glyceraldehyde-3-phosphate gene] and the use of its promoter for heterologous expression in Cryptococcus neoformans, a human pathogen. Varma A; Kwon-Chung KJ Gene; 1999 May; 232(2):155-63. PubMed ID: 10352226 [TBL] [Abstract][Full Text] [Related]
12. APP1 transcription is regulated by inositol-phosphorylceramide synthase 1-diacylglycerol pathway and is controlled by ATF2 transcription factor in Cryptococcus neoformans. Mare L; Iatta R; Montagna MT; Luberto C; Del Poeta M J Biol Chem; 2005 Oct; 280(43):36055-64. PubMed ID: 16129666 [TBL] [Abstract][Full Text] [Related]
13. Nucleotide sequence of the tryptophan decarboxylase gene of Catharanthus roseus and expression of tdc-gusA gene fusions in Nicotiana tabacum. Goddijn OJ; Lohman FP; de Kam RJ; Schilperoort RA; Hoge JH Mol Gen Genet; 1994 Jan; 242(2):217-25. PubMed ID: 8159173 [TBL] [Abstract][Full Text] [Related]
14. An efficiently regulated promoter system for Cryptococcus neoformans utilizing the CTR4 promoter. Ory JJ; Griffith CL; Doering TL Yeast; 2004 Aug; 21(11):919-26. PubMed ID: 15334556 [TBL] [Abstract][Full Text] [Related]
15. Duplicate upstream activating sequences in the promoter region of the Saccharomyces cerevisiae GAL7 gene. Tajima M; Nogi Y; Fukasawa T Mol Cell Biol; 1986 Jan; 6(1):246-56. PubMed ID: 3023825 [TBL] [Abstract][Full Text] [Related]
16. Cloning and expression analysis of a UDP-galactose/glucose pyrophosphorylase from melon fruit provides evidence for the major metabolic pathway of galactose metabolism in raffinose oligosaccharide metabolizing plants. Dai N; Petreikov M; Portnoy V; Katzir N; Pharr DM; Schaffer AA Plant Physiol; 2006 Sep; 142(1):294-304. PubMed ID: 16829585 [TBL] [Abstract][Full Text] [Related]
17. Galactose regulation in Saccharomyces cerevisiae. The enzymes encoded by the GAL7, 10, 1 cluster are co-ordinately controlled and separately translated. Broach JR J Mol Biol; 1979 Jun; 131(1):41-53. PubMed ID: 385888 [No Abstract] [Full Text] [Related]
18. Regulated expression of cyclic AMP-dependent protein kinase A reveals an influence on cell size and the secretion of virulence factors in Cryptococcus neoformans. Choi J; Vogl AW; Kronstad JW Mol Microbiol; 2012 Aug; 85(4):700-15. PubMed ID: 22717009 [TBL] [Abstract][Full Text] [Related]
19. Mannitol-1-phosphate dehydrogenase from Cryptococcus neoformans is a zinc-containing long-chain alcohol/polyol dehydrogenase. Suvarna K; Bartiss A; Wong B Microbiology (Reading); 2000 Oct; 146 ( Pt 10)():2705-2713. PubMed ID: 11021946 [TBL] [Abstract][Full Text] [Related]
20. Systematic capsule gene disruption reveals the central role of galactose metabolism on Cryptococcus neoformans virulence. Moyrand F; Fontaine T; Janbon G Mol Microbiol; 2007 May; 64(3):771-81. PubMed ID: 17462022 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]