These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 8577265)

  • 1. Growth conditions influence expression of cell surface hydrophobicity of staphylococci and other wound infection pathogens.
    Ljungh A; Wadström T
    Microbiol Immunol; 1995; 39(10):753-7. PubMed ID: 8577265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effect of growth conditions on cell surface hydrophobicity of multiresistant Pseudomonas aeruginosa strains].
    Deptuła A; Mikucka A; Gospodarek E
    Med Dosw Mikrobiol; 2004; 56(4):359-64. PubMed ID: 15959992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predominant pathogens in hospital infections.
    Jarvis WR; Martone WJ
    J Antimicrob Chemother; 1992 Apr; 29 Suppl A():19-24. PubMed ID: 1601752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The effect of culture conditions on hydrophobic properties of Pseudomonas aeruginosa].
    Wolska K; Pogorzelska S; Fijoł E; Jakubczak A; Bukowski K
    Med Dosw Mikrobiol; 2002; 54(1):61-6. PubMed ID: 12185685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High surface hydrophobicity of autoaggregating Staphylococcus aureus strains isolated from human infections studied with the salt aggregation test.
    Ljungh A; Hjertén S; Wadström T
    Infect Immun; 1985 Feb; 47(2):522-6. PubMed ID: 3881353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Influence of culture conditions on cell surface hydrophobicity of rods of genus Serratia].
    Mikucka A; Gospodarek E; Ulatowska B
    Med Dosw Mikrobiol; 2000; 52(1):9-15. PubMed ID: 11107775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of antibiotics on cell surface hydrophobicity of bacteria causing orthopedic wound infections.
    Kustos T; Kustos I; Kilár F; Rappai G; Kocsis B
    Chemotherapy; 2003 Sep; 49(5):237-42. PubMed ID: 14504434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimicrobial systems of the surgical wound. II. Detection of antimicrobial protein in cell-free wound fluid.
    Hohn DC; Granelli SG; Burton RW; Hunt TK
    Am J Surg; 1977 May; 133(5):601-6. PubMed ID: 404931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell surface hydrophobicity of Bacillus spp. as a function of nutrient supply and lipopeptides biosynthesis and its role in adhesion.
    Czaczyk K; Białas W; Myszka K
    Pol J Microbiol; 2008; 57(4):313-9. PubMed ID: 19275045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Analysis of distribution and drug resistance of pathogens from the wounds of 1 310 thermal burn patients].
    Zhang C; Gong YL; Luo XQ; Liu MX; Peng YZ
    Zhonghua Shao Shang Za Zhi; 2018 Nov; 34(11):802-808. PubMed ID: 30481922
    [No Abstract]   [Full Text] [Related]  

  • 11. [Influence of incubation conditions on cell surface hydrophobicity of Candida species fungi].
    Szabelska M; Gospodarek E; Ciok-Pater E
    Med Dosw Mikrobiol; 2006; 58(3):253-60. PubMed ID: 17341001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Hydrophobic properties of Enterobacter spp. rods].
    Michalska A; Gospodarek E
    Med Dosw Mikrobiol; 2009; 61(3):227-34. PubMed ID: 20120925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The structure of populations of Pseudomonas aeruginosa in association with staphylococci and Escherichia].
    Bel'skiĭ VV; Shatalova EV; Singh PK
    Zh Mikrobiol Epidemiol Immunobiol; 1994; (6):37-8. PubMed ID: 7879525
    [No Abstract]   [Full Text] [Related]  

  • 14. Standardization of salt aggregation test for reproducible determination of cell-surface hydrophobicity with special reference to Staphylococcus species.
    Rozgonyi F; Szitha KR; Hjertén S; Wadström T
    J Appl Bacteriol; 1985 Nov; 59(5):451-7. PubMed ID: 3910635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of growth and environmental conditions on cell surface hydrophobicity of Pseudomonas fluorescens in non-specific adhesion.
    Jana TK; Srivastava AK; Csery K; Arora DK
    Can J Microbiol; 2000 Jan; 46(1):28-37. PubMed ID: 10696469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of low-concentration monorhamnolipid in cell surface hydrophobicity of Pseudomonas aeruginosa: adsorption or lipopolysaccharide content variation.
    Liu Y; Ma X; Zeng G; Zhong H; Liu Z; Jiang Y; Yuan X; He X; Lai M; He Y
    Appl Microbiol Biotechnol; 2014 Dec; 98(24):10231-41. PubMed ID: 25077779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative study on growth in soft-agar, adherence to glass and haemolysis types of coagulase-negative staphylococci.
    Szücs I; Sztroj T; Papp-Falusi E; Andirkó I; Rédai I; Rozgonyi F
    Acta Microbiol Hung; 1993; 40(3):181-9. PubMed ID: 8191864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the cell surface properties of drinking water pathogens by microbial adhesion to hydrocarbon and electrophoretic mobility measurements.
    Popovici J; White CP; Hoelle J; Kinkle BK; Lytle DA
    Colloids Surf B Biointerfaces; 2014 Jun; 118():126-32. PubMed ID: 24815929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of physiological conditions in the oropharynx on the adherence of respiratory bacterial isolates to endotracheal tube poly(vinyl chloride).
    Jones DS; McGovern JG; Woolfson AD; Gorman SP
    Biomaterials; 1997 Mar; 18(6):503-10. PubMed ID: 9111955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the hydrophobic properties of Candida albicans and Candida dubliniensis.
    Hazen KC; Wu JG; Masuoka J
    Infect Immun; 2001 Feb; 69(2):779-86. PubMed ID: 11159968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.