BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 8577760)

  • 1. Antiproliferative properties of the USF family of helix-loop-helix transcription factors.
    Luo X; Sawadogo M
    Proc Natl Acad Sci U S A; 1996 Feb; 93(3):1308-13. PubMed ID: 8577760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decreased tumorigenicity of c-Myc-transformed fibroblasts expressing active USF2.
    Choe C; Chen N; Sawadogo M
    Exp Cell Res; 2005 Jan; 302(1):1-10. PubMed ID: 15541720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The dual role of helix-loop--helix-zipper protein USF in ribosomal RNA gene transcription in vivo.
    Ghosh AK; Datta PK; Jacob ST
    Oncogene; 1997 Feb; 14(5):589-94. PubMed ID: 9053857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The basic region/helix-loop-helix/leucine repeat transcription factor USF interferes with Ras transformation.
    Aperlo C; Boulukos KE; Pognonec P
    Eur J Biochem; 1996 Oct; 241(1):249-53. PubMed ID: 8898913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Base preferences for DNA binding by the bHLH-Zip protein USF: effects of MgCl2 on specificity and comparison with binding of Myc family members.
    Bendall AJ; Molloy PL
    Nucleic Acids Res; 1994 Jul; 22(14):2801-10. PubMed ID: 8052536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cha, a basic helix-loop-helix transcription factor involved in the regulation of upstream stimulatory factor activity.
    Rodríguez CI; Gironès N; Fresno M
    J Biol Chem; 2003 Oct; 278(44):43135-45. PubMed ID: 12923186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-type-dependent activity of the ubiquitous transcription factor USF in cellular proliferation and transcriptional activation.
    Qyang Y; Luo X; Lu T; Ismail PM; Krylov D; Vinson C; Sawadogo M
    Mol Cell Biol; 1999 Feb; 19(2):1508-17. PubMed ID: 9891084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upstream stimulatory factor but not c-Myc enhances transcription of the human polymeric immunoglobulin receptor gene.
    Bruno ME; West RB; Schneeman TA; Bresnick EH; Kaetzel CS
    Mol Immunol; 2004 Jan; 40(10):695-708. PubMed ID: 14644095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation domains of L-Myc and c-Myc determine their transforming potencies in rat embryo cells.
    Barrett J; Birrer MJ; Kato GJ; Dosaka-Akita H; Dang CV
    Mol Cell Biol; 1992 Jul; 12(7):3130-7. PubMed ID: 1620120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure, sequence, and chromosomal location of the gene for USF2 transcription factors in mouse.
    Henrion AA; Martinez A; Mattei MG; Kahn A; Raymondjean M
    Genomics; 1995 Jan; 25(1):36-43. PubMed ID: 7774954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The potent lipid mitogen sphingosylphosphocholine activates the DNA binding activity of upstream stimulating factor (USF), a basic helix-loop-helix-zipper protein.
    Berger A; Cultaro CM; Segal S; Spiegel S
    Biochim Biophys Acta; 1998 Feb; 1390(2):225-36. PubMed ID: 9507145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mouse USF1 gene cloning: comparative organization within the c-myc gene family.
    Henrion AA; Vaulont S; Raymondjean M; Kahn A
    Mamm Genome; 1996 Nov; 7(11):803-9. PubMed ID: 8875887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of USF transcriptional activity in breast cancer cell lines.
    Ismail PM; Lu T; Sawadogo M
    Oncogene; 1999 Sep; 18(40):5582-91. PubMed ID: 10523835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The basic helix-loop-helix/leucine zipper transcription factor USF2 integrates serum-induced PAI-1 expression and keratinocyte growth.
    Qi L; Higgins CE; Higgins SP; Law BK; Simone TM; Higgins PJ
    J Cell Biochem; 2014 Oct; 115(10):1840-7. PubMed ID: 24905330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunochemical characterization and transacting properties of upstream stimulatory factor isoforms.
    Viollet B; Lefrançois-Martinez AM; Henrion A; Kahn A; Raymondjean M; Martinez A
    J Biol Chem; 1996 Jan; 271(3):1405-15. PubMed ID: 8576131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose-dependent liver gene expression in upstream stimulatory factor 2 -/- mice.
    Vallet VS; Henrion AA; Bucchini D; Casado M; Raymondjean M; Kahn A; Vaulont S
    J Biol Chem; 1997 Aug; 272(35):21944-9. PubMed ID: 9268329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrimination between different E-box-binding proteins at an endogenous target gene of c-myc.
    Desbarats L; Gaubatz S; Eilers M
    Genes Dev; 1996 Feb; 10(4):447-60. PubMed ID: 8600028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for a cancer-specific switch at the CDK4 promoter with loss of control by both USF and c-Myc.
    Pawar SA; Szentirmay MN; Hermeking H; Sawadogo M
    Oncogene; 2004 Aug; 23(36):6125-35. PubMed ID: 15208653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lack of transcriptional repression by max homodimers.
    Yin X; Grove L; Prochownik EV
    Oncogene; 1998 May; 16(20):2629-37. PubMed ID: 9632139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mmip1: a novel leucine zipper protein that reverses the suppressive effects of Mad family members on c-myc.
    Gupta K; Anand G; Yin X; Grove L; Prochownik EV
    Oncogene; 1998 Mar; 16(9):1149-59. PubMed ID: 9528857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.