These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 8577760)

  • 1. Antiproliferative properties of the USF family of helix-loop-helix transcription factors.
    Luo X; Sawadogo M
    Proc Natl Acad Sci U S A; 1996 Feb; 93(3):1308-13. PubMed ID: 8577760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decreased tumorigenicity of c-Myc-transformed fibroblasts expressing active USF2.
    Choe C; Chen N; Sawadogo M
    Exp Cell Res; 2005 Jan; 302(1):1-10. PubMed ID: 15541720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The dual role of helix-loop--helix-zipper protein USF in ribosomal RNA gene transcription in vivo.
    Ghosh AK; Datta PK; Jacob ST
    Oncogene; 1997 Feb; 14(5):589-94. PubMed ID: 9053857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The basic region/helix-loop-helix/leucine repeat transcription factor USF interferes with Ras transformation.
    Aperlo C; Boulukos KE; Pognonec P
    Eur J Biochem; 1996 Oct; 241(1):249-53. PubMed ID: 8898913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Base preferences for DNA binding by the bHLH-Zip protein USF: effects of MgCl2 on specificity and comparison with binding of Myc family members.
    Bendall AJ; Molloy PL
    Nucleic Acids Res; 1994 Jul; 22(14):2801-10. PubMed ID: 8052536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cha, a basic helix-loop-helix transcription factor involved in the regulation of upstream stimulatory factor activity.
    Rodríguez CI; Gironès N; Fresno M
    J Biol Chem; 2003 Oct; 278(44):43135-45. PubMed ID: 12923186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-type-dependent activity of the ubiquitous transcription factor USF in cellular proliferation and transcriptional activation.
    Qyang Y; Luo X; Lu T; Ismail PM; Krylov D; Vinson C; Sawadogo M
    Mol Cell Biol; 1999 Feb; 19(2):1508-17. PubMed ID: 9891084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upstream stimulatory factor but not c-Myc enhances transcription of the human polymeric immunoglobulin receptor gene.
    Bruno ME; West RB; Schneeman TA; Bresnick EH; Kaetzel CS
    Mol Immunol; 2004 Jan; 40(10):695-708. PubMed ID: 14644095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation domains of L-Myc and c-Myc determine their transforming potencies in rat embryo cells.
    Barrett J; Birrer MJ; Kato GJ; Dosaka-Akita H; Dang CV
    Mol Cell Biol; 1992 Jul; 12(7):3130-7. PubMed ID: 1620120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure, sequence, and chromosomal location of the gene for USF2 transcription factors in mouse.
    Henrion AA; Martinez A; Mattei MG; Kahn A; Raymondjean M
    Genomics; 1995 Jan; 25(1):36-43. PubMed ID: 7774954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The potent lipid mitogen sphingosylphosphocholine activates the DNA binding activity of upstream stimulating factor (USF), a basic helix-loop-helix-zipper protein.
    Berger A; Cultaro CM; Segal S; Spiegel S
    Biochim Biophys Acta; 1998 Feb; 1390(2):225-36. PubMed ID: 9507145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mouse USF1 gene cloning: comparative organization within the c-myc gene family.
    Henrion AA; Vaulont S; Raymondjean M; Kahn A
    Mamm Genome; 1996 Nov; 7(11):803-9. PubMed ID: 8875887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of USF transcriptional activity in breast cancer cell lines.
    Ismail PM; Lu T; Sawadogo M
    Oncogene; 1999 Sep; 18(40):5582-91. PubMed ID: 10523835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The basic helix-loop-helix/leucine zipper transcription factor USF2 integrates serum-induced PAI-1 expression and keratinocyte growth.
    Qi L; Higgins CE; Higgins SP; Law BK; Simone TM; Higgins PJ
    J Cell Biochem; 2014 Oct; 115(10):1840-7. PubMed ID: 24905330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunochemical characterization and transacting properties of upstream stimulatory factor isoforms.
    Viollet B; Lefrançois-Martinez AM; Henrion A; Kahn A; Raymondjean M; Martinez A
    J Biol Chem; 1996 Jan; 271(3):1405-15. PubMed ID: 8576131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose-dependent liver gene expression in upstream stimulatory factor 2 -/- mice.
    Vallet VS; Henrion AA; Bucchini D; Casado M; Raymondjean M; Kahn A; Vaulont S
    J Biol Chem; 1997 Aug; 272(35):21944-9. PubMed ID: 9268329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrimination between different E-box-binding proteins at an endogenous target gene of c-myc.
    Desbarats L; Gaubatz S; Eilers M
    Genes Dev; 1996 Feb; 10(4):447-60. PubMed ID: 8600028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for a cancer-specific switch at the CDK4 promoter with loss of control by both USF and c-Myc.
    Pawar SA; Szentirmay MN; Hermeking H; Sawadogo M
    Oncogene; 2004 Aug; 23(36):6125-35. PubMed ID: 15208653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lack of transcriptional repression by max homodimers.
    Yin X; Grove L; Prochownik EV
    Oncogene; 1998 May; 16(20):2629-37. PubMed ID: 9632139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mmip1: a novel leucine zipper protein that reverses the suppressive effects of Mad family members on c-myc.
    Gupta K; Anand G; Yin X; Grove L; Prochownik EV
    Oncogene; 1998 Mar; 16(9):1149-59. PubMed ID: 9528857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.