These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 8578118)

  • 1. [Treatment of the future for spinal cord injuries].
    Privat A
    Rev Prat; 1995 Oct; 45(16):2051-6. PubMed ID: 8578118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Pathophysiology and treatment of spinal cord injury].
    Privat A
    Bull Acad Natl Med; 2005 Jun; 189(6):1109-17; discussion 1117-8. PubMed ID: 16433437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharmacological, cell, and gene therapy strategies to promote spinal cord regeneration.
    Blits B; Boer GJ; Verhaagen J
    Cell Transplant; 2002; 11(6):593-613. PubMed ID: 12428749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional recovery after human umbilical cord blood cells transplantation with brain-derived neutrophic factor into the spinal cord injured rat.
    Kuh SU; Cho YE; Yoon DH; Kim KN; Ha Y
    Acta Neurochir (Wien); 2005 Sep; 147(9):985-92; discussion 992. PubMed ID: 16010451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced regeneration in spinal cord injury by concomitant treatment with granulocyte colony-stimulating factor and neuronal stem cells.
    Pan HC; Cheng FC; Lai SZ; Yang DY; Wang YC; Lee MS
    J Clin Neurosci; 2008 Jun; 15(6):656-64. PubMed ID: 18406145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection.
    Tsai EC; Dalton PD; Shoichet MS; Tator CH
    Biomaterials; 2006 Jan; 27(3):519-33. PubMed ID: 16099035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Treatment of the chronically injured spinal cord with neurotrophic factors can promote axonal regeneration from supraspinal neurons.
    Ye JH; Houle JD
    Exp Neurol; 1997 Jan; 143(1):70-81. PubMed ID: 9000447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Axonal guidance molecules and the failure of axonal regeneration in the adult mammalian spinal cord.
    Bolsover S; Fabes J; Anderson PN
    Restor Neurol Neurosci; 2008; 26(2-3):117-30. PubMed ID: 18820406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined transplantation of neural stem cells and olfactory ensheathing cells for the repair of spinal cord injuries.
    Ao Q; Wang AJ; Chen GQ; Wang SJ; Zuo HC; Zhang XF
    Med Hypotheses; 2007; 69(6):1234-7. PubMed ID: 17548168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain-derived neurotrophic factor gene transfer with adeno-associated viral and lentiviral vectors prevents rubrospinal neuronal atrophy and stimulates regeneration-associated gene expression after acute cervical spinal cord injury.
    Kwon BK; Liu J; Lam C; Plunet W; Oschipok LW; Hauswirth W; Di Polo A; Blesch A; Tetzlaff W
    Spine (Phila Pa 1976); 2007 May; 32(11):1164-73. PubMed ID: 17495772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intervention strategies to enhance anatomical plasticity and recovery of function after spinal cord injury.
    Bregman BS; Diener PS; McAtee M; Dai HN; James C
    Adv Neurol; 1997; 72():257-75. PubMed ID: 8993704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transplantation of embryonic neurones to replace missing spinal motoneurones.
    Nógrádi A; Szabó A
    Restor Neurol Neurosci; 2008; 26(2-3):215-23. PubMed ID: 18820412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trophic factor modulation of c-Jun expression in supraspinal neurons after chronic spinal cord injury.
    Houle JD; Schramm P; Herdegen T
    Exp Neurol; 1998 Dec; 154(2):602-11. PubMed ID: 9878195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induced expression of polysialic acid in the spinal cord promotes regeneration of sensory axons.
    Zhang Y; Ghadiri-Sani M; Zhang X; Richardson PM; Yeh J; Bo X
    Mol Cell Neurosci; 2007 May; 35(1):109-19. PubMed ID: 17363265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Spinal cord injuries: comments on preventive and curative strategy].
    Privat A; Pencalet P; Gimenez-Ribotta M; Mersel M; Rajaofetra NU
    Agressologie; 1993; 34 Spec No 2():64. PubMed ID: 7802143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurotrophic factors expressed in both cortex and spinal cord induce axonal plasticity after spinal cord injury.
    Zhou L; Shine HD
    J Neurosci Res; 2003 Oct; 74(2):221-6. PubMed ID: 14515351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene transfer to the spinal cord neural scar with lentiviral vectors: predominant transgene expression in astrocytes but not in meningeal cells.
    Hendriks WT; Eggers R; Verhaagen J; Boer GJ
    J Neurosci Res; 2007 Nov; 85(14):3041-52. PubMed ID: 17671987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust growth of chronically injured spinal cord axons induced by grafts of genetically modified NGF-secreting cells.
    Grill RJ; Blesch A; Tuszynski MH
    Exp Neurol; 1997 Dec; 148(2):444-52. PubMed ID: 9417824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental spinal cord injury: Wallerian degeneration in the dorsal column is followed by revascularization, glial proliferation, and nerve regeneration.
    Zhang Z; Guth L
    Exp Neurol; 1997 Sep; 147(1):159-71. PubMed ID: 9294413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular GDNF delivery promotes growth of motor and dorsal column sensory axons after partial and complete spinal cord transections and induces remyelination.
    Blesch A; Tuszynski MH
    J Comp Neurol; 2003 Dec; 467(3):403-17. PubMed ID: 14608602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.