BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 8578372)

  • 1. Mechanism of the burst fracture in the thoracolumbar spine. The effect of loading rate.
    Tran NT; Watson NA; Tencer AF; Ching RP; Anderson PA
    Spine (Phila Pa 1976); 1995 Sep; 20(18):1984-8. PubMed ID: 8578372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compressive loading of the spine may affect the spinal canal encroachment of burst fractures.
    Boisclair D; Mac-Thiong JM; Parent S; Petit Y
    J Spinal Disord Tech; 2013 Aug; 26(6):342-6. PubMed ID: 22274784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dynamic study of thoracolumbar burst fractures.
    Wilcox RK; Boerger TO; Allen DJ; Barton DC; Limb D; Dickson RA; Hall RM
    J Bone Joint Surg Am; 2003 Nov; 85(11):2184-9. PubMed ID: 14630851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Canal geometry changes associated with axial compressive cervical spine fracture.
    Carter JW; Mirza SK; Tencer AF; Ching RP
    Spine (Phila Pa 1976); 2000 Jan; 25(1):46-54. PubMed ID: 10647160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of post-injury spinal position on canal occlusion in a cervical spine burst fracture model.
    Ching RP; Watson NA; Carter JW; Tencer AF
    Spine (Phila Pa 1976); 1997 Aug; 22(15):1710-5. PubMed ID: 9259780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The load-sharing classification of thoracolumbar fractures: an in vitro biomechanical validation.
    Wang XY; Dai LY; Xu HZ; Chi YL
    Spine (Phila Pa 1976); 2007 May; 32(11):1214-9. PubMed ID: 17495778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of canal occlusion during the thoracolumbar burst fracture process.
    Wilcox RK; Boerger TO; Hall RM; Barton DC; Limb D; Dickson RA
    J Biomech; 2002 Mar; 35(3):381-4. PubMed ID: 11858815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute thoracolumbar burst fractures: a new view of loading mechanisms.
    Langrana NA; Harten RD RD; Lin DC; Reiter MF; Lee CK
    Spine (Phila Pa 1976); 2002 Mar; 27(5):498-508. PubMed ID: 11880835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the independent risk factors of neurologic deficit after thoracolumbar burst fracture.
    Tang P; Long A; Shi T; Zhang L; Zhang L
    J Orthop Surg Res; 2016 Oct; 11(1):128. PubMed ID: 27788683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the amounts of canal encroachment between semisitting and supine position of computed tomography-myelography for vertebral fractures of the elderly involving the posterior vertebral wall.
    Hayashi T; Maeda T; Ueta T; Shiba K; Iwamoto Y
    Spine (Phila Pa 1976); 2012 Sep; 37(19):E1203-8. PubMed ID: 22614797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental study of thoracolumbar burst fractures. A radiographic and biomechanical analysis of anterior and posterior instrumentation systems.
    Shono Y; McAfee PC; Cunningham BW
    Spine (Phila Pa 1976); 1994 Aug; 19(15):1711-22. PubMed ID: 7973965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous remodeling of the spinal canal after conservative management of thoracolumbar burst fractures.
    de Klerk LW; Fontijne WP; Stijnen T; Braakman R; Tanghe HL; van Linge B
    Spine (Phila Pa 1976); 1998 May; 23(9):1057-60. PubMed ID: 9589546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geometric changes in the cervical spinal canal during impact.
    Chang DG; Tencer AF; Ching RP; Treece B; Senft D; Anderson PA
    Spine (Phila Pa 1976); 1994 Apr; 19(8):973-80. PubMed ID: 8009357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Influence of two kinds of bone grafting methods on bone defect gap residual rates and compressive stiffness after reduction of thoracolumbar burst fracture].
    Ao J; Xin Z; Chen F; Xin X; Liao W
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Aug; 27(8):974-9. PubMed ID: 24171354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Occlusion of the lumbar spine canal during high-rate axial compression.
    Robinson DL; Tse KM; Franklyn M; Ackland DC; Richardson MD; Lee PVS
    Spine J; 2020 Oct; 20(10):1692-1704. PubMed ID: 32442519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the risk factors for severity of neurologic status in 216 patients with thoracolumbar and lumbar burst fractures.
    YuguƩ I; Aono K; Shiba K; Ueta T; Maeda T; Mori E; Kawano O
    Spine (Phila Pa 1976); 2011 Sep; 36(19):1563-9. PubMed ID: 21245793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spinal canal remodeling in burst fractures of the thoracolumbar spine: a computerized tomographic comparison between operative and nonoperative treatment.
    Yazici M; Atilla B; Tepe S; Calisir A
    J Spinal Disord; 1996 Oct; 9(5):409-13. PubMed ID: 8938610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface strain distribution on thoracic and lumbar vertebrae under axial compression. The role in burst fractures.
    Hongo M; Abe E; Shimada Y; Murai H; Ishikawa N; Sato K
    Spine (Phila Pa 1976); 1999 Jun; 24(12):1197-202. PubMed ID: 10382245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of single and incremental impact approaches for producing experimental thoracolumbar burst fractures.
    Wang XY; Dai LY; Xu HZ; Chi YL
    J Neurosurg Spine; 2007 Aug; 7(2):199-204. PubMed ID: 17688060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Internal pressure measurements during burst fracture formation in human lumbar vertebrae.
    Ochia RS; Ching RP
    Spine (Phila Pa 1976); 2002 Jun; 27(11):1160-7. PubMed ID: 12045511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.