These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 857891)

  • 1. Topographical dissection of sheep erythrocyte membrane phospholipids by taurocholate and glycocholate.
    Billington D; Coleman R; Lusak YA
    Biochim Biophys Acta; 1977 May; 466(3):526-30. PubMed ID: 857891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane lipid composition and susceptibility to bile salt damage.
    Coleman R; Lowe PJ; Billington D
    Biochim Biophys Acta; 1980 Jun; 599(1):294-300. PubMed ID: 7397151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycocholate can remove lipid and protein components from the outer leaflet of the plasma membrane without causing cell lysis.
    Coleman R; Holdsworth G; Vyvoda OS
    Biochem Soc Trans; 1976; 4(2):244. PubMed ID: 1001659
    [No Abstract]   [Full Text] [Related]  

  • 4. Effects of bile salts of human erythrocytes. Plasma membrane vesiculation, phospholipid solubilization and their possible relationships to bile secretion.
    Billington D; Coleman R
    Biochim Biophys Acta; 1978 May; 509(1):33-47. PubMed ID: 647007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane composition affects characteristics of glycocholate-induced lysis of erythrocytes [proceedings].
    Coleman R; Billington D
    Biochem Soc Trans; 1979 Oct; 7(5):948. PubMed ID: 510753
    [No Abstract]   [Full Text] [Related]  

  • 6. Plasma-membrane components can be removed from isolated lymphocytes by the bile salts glycocholate and taurocholate without cell lysis.
    Holdsworth G; Coleman R
    Biochem J; 1976 Aug; 158(2):493-5. PubMed ID: 186040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilizing factors of phospholipid asymmetry in the erythrocyte membrane.
    Dressler V; Haest CW; Plasa G; Deuticke B; Erusalimsky JD
    Biochim Biophys Acta; 1984 Aug; 775(2):189-96. PubMed ID: 6466667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The release of membrane components prior to haemolysis during extraction of intact eryghrocytes with bile salts.
    Coleman R; Holdsworth G
    Biochim Biophys Acta; 1976 Apr; 426(4):776-80. PubMed ID: 1259991
    [No Abstract]   [Full Text] [Related]  

  • 9. Stimulation of taurocholate and glycocholate efflux from the rat hepatocyte by arginine vasopressin.
    Kuhn WF; Gewirtz DA
    Am J Physiol; 1988 May; 254(5 Pt 1):G732-40. PubMed ID: 3364571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical synthesis of dinitrodiphenysulfone derivatives of ethanolamine and serine and its application to the study of neighbor analysis of amino-phospholipids in the erythrocyte membrane.
    Marinetti GV; Love R
    J Membr Biol; 1976; 30(3):213-24. PubMed ID: 1009570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations in the phospholipid composition and morphology of ovine erythrocytes after intravenous inoculation of Corynebacterium pseudotuberculosis.
    Brogden KA; Engen RL
    Am J Vet Res; 1990 Jun; 51(6):874-7. PubMed ID: 2368943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane fluidity and bile salt damage.
    Lowe PJ; Coleman R
    Biochim Biophys Acta; 1981 Jan; 640(1):55-65. PubMed ID: 7213693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Essential fatty acid and lipid profiles in plasma and erythrocytes in patients with multiple sclerosis.
    Cunnane SC; Ho SY; Dore-Duffy P; Ells KR; Horrobin DF
    Am J Clin Nutr; 1989 Oct; 50(4):801-6. PubMed ID: 2801584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Labeling of phospholipids in vesicles and human erythrocytes by photoactivable fatty acid derivatives.
    Berkhout TA; van Amerongen A; Wirtz KW
    Eur J Biochem; 1984 Jul; 142(1):91-7. PubMed ID: 6745269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane phospholipid organization in calcium-loaded human erythrocytes.
    Chandra R; Joshi PC; Bajpai VK; Gupta CM
    Biochim Biophys Acta; 1987 Aug; 902(2):253-62. PubMed ID: 3620460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of membrane lipid content of normal and carrier-erythrocytes from cattle.
    DeLoach JR; Spates GE
    Ital J Biochem; 1988; 37(6):386-91. PubMed ID: 3246485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The removal of membrane components from human erythrocytes by glycocholate [proceedings].
    Billington D; Coleman R
    Biochem Soc Trans; 1978; 6(1):286-8. PubMed ID: 640193
    [No Abstract]   [Full Text] [Related]  

  • 18. Lipids of Plasmodium lophurae, and of erythrocytes and plasma of normal and P. lophurae-infected Pekin ducklings.
    Beach DH; Sherman IW; Holz GG
    J Parasitol; 1977 Feb; 63(1):62-75. PubMed ID: 845741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Some characteristics of the residue obtained after pronase treatment of sheep erythrocyte membranes. I. Protein and phospholipid patterns.
    Nanni G; Pala V; Cinollo G; Marinari UM; Casu A
    Ital J Biochem; 1977; 26(3):215-31. PubMed ID: 914502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction of ozone with phospholipid vesicles and human erythrocyte ghosts.
    Freeman BA; Sharman MC; Mudd JB
    Arch Biochem Biophys; 1979 Oct; 197(1):264-72. PubMed ID: 575611
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.