These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 8579172)

  • 41. Population variation of human mitochondrial DNA hypervariable regions I and II in 105 Croatian individuals demonstrated by immobilized sequence-specific oligonucleotide probe analysis.
    Gabriel MN; Calloway CD; Reynolds RL; Andelinović S; Primorac D
    Croat Med J; 2001 Jun; 42(3):328-35. PubMed ID: 11387647
    [TBL] [Abstract][Full Text] [Related]  

  • 42. 2000 Year-old ancient equids: an ancient-DNA lesson from pompeii remains.
    Di Bernardo G; Del Gaudio S; Galderisi U; Cipollaro M
    J Exp Zool B Mol Dev Evol; 2004 Nov; 302(6):550-6. PubMed ID: 15468050
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mitochondrial DNA depletion analysis by pseudogene ratioing.
    Swerdlow RH; Redpath GT; Binder DR; Davis JN; VandenBerg SR
    J Neurosci Methods; 2006 Jan; 150(2):265-71. PubMed ID: 16118020
    [TBL] [Abstract][Full Text] [Related]  

  • 44. PCR primers and amplification methods for 12S ribosomal DNA, the control region, cytochrome oxidase I, and cytochrome b in bufonids and other frogs, and an overview of PCR primers which have amplified DNA in amphibians successfully.
    Goebel AM; Donnelly JM; Atz ME
    Mol Phylogenet Evol; 1999 Feb; 11(1):163-99. PubMed ID: 10082619
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of human remains by immobilized sequence-specific oligonucleotide probe analysis of mtDNA hypervariable regions I and II.
    Gabriel MN; Calloway CD; Reynolds RL; Primorac D
    Croat Med J; 2003 Jun; 44(3):293-8. PubMed ID: 12808721
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A comparative study of the quality of DNA obtained from fresh frozen and formalin-fixed decalcified paraffin-embedded bone marrow trephine biopsy specimens using two different methods.
    Talaulikar D; Gray JX; Shadbolt B; McNiven M; Dahlstrom JE
    J Clin Pathol; 2008 Jan; 61(1):119-23. PubMed ID: 17545562
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Simple and sensitive method for identification of human DNA by allele-specific polymerase chain reaction of FOXP2.
    Hiroshige K; Soejima M; Nishioka T; Kamimura S; Koda Y
    J Forensic Sci; 2009 Jul; 54(4):857-61. PubMed ID: 19457146
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Association of mitochondrial DNA deletions and cochlear pathology: a molecular biologic tool.
    Seidman MD; Bai U; Khan MJ; Murphy MJ; Quirk WS; Castora FL; Hinojosa R
    Laryngoscope; 1996 Jun; 106(6):777-83. PubMed ID: 8656967
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dual immunofluorescence staining of proteoglycans in human temporal bones.
    Markaryan A; Nelson EG; Kohut RI; Hinojosa R
    Laryngoscope; 2011 Jul; 121(7):1525-31. PubMed ID: 21647895
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A technique for reembedding celloidin sections for electron microscopy.
    Portmann D; Fayad J; Wackym PA; Shiroishi H; Linthicum FH; Rask-Andersen H
    Laryngoscope; 1990 Feb; 100(2 Pt 1):195-9. PubMed ID: 2405230
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Immunohistochemical techniques for the human inner ear.
    Lopez IA; Ishiyama G; Hosokawa S; Hosokawa K; Acuna D; Linthicum FH; Ishiyama A
    Histochem Cell Biol; 2016 Oct; 146(4):367-87. PubMed ID: 27480257
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ribonucleases may limit recovery of ribonucleic acids from archival human temporal bones.
    Lee KH; McKenna MJ; Sewell WF; Ung F
    Laryngoscope; 1997 Sep; 107(9):1228-34. PubMed ID: 9292608
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Application of labeling techniques to archival temporal bone sections.
    Tian Q; Linthicum FH; Keithley EM
    Ann Otol Rhinol Laryngol; 1999 Jan; 108(1):47-53. PubMed ID: 9930540
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular temporal bone pathology: I. Historical foundation.
    Wackym PA
    Laryngoscope; 1997 Sep; 107(9):1156-64. PubMed ID: 9292597
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Antigen retrieval immunohistochemistry used for routinely processed celloidin-embedded human temporal bone sections: standardization and development.
    Shi SR; Cote RJ; Taylor CR
    Auris Nasus Larynx; 1998 Dec; 25(4):425-43. PubMed ID: 9853668
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transmission electron microscopy of previously embedded celloidin sections.
    Portmann D; Fayad J; Linthicum FH; Rask-Andersen H
    Acta Otolaryngol Suppl; 1990; 470():7-12. PubMed ID: 2239236
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mitochondrial cytochrome oxidase immunolabeling in aged human temporal bones.
    Keithley EM; Harris B; Desai K; Linthicum F; Fischel-Ghodsian N
    Hear Res; 2001 Jul; 157(1-2):93-9. PubMed ID: 11470189
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Deoxyribonucleic acid contamination in archival human temporal bones: a potentially significant problem.
    McKenna MJ; Kristiansen AG; Tropitzsch AS; Tranebjaerg L; Merchant SN
    Otol Neurotol; 2002 Sep; 23(5):789-92. PubMed ID: 12218636
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Single cell PCR from archival stained bone marrow slides: a method for molecular diagnosis and characterization.
    Zanssen S
    J Clin Lab Anal; 2004; 18(3):176-81. PubMed ID: 15103682
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fibronectin-like immunoreactivity of the basilar membrane of celloidin-embedded human temporal bone sections.
    Keithley EM; Tian Q; Robins-Browne R
    Acta Otolaryngol; 1994 Nov; 114(6):613-9. PubMed ID: 7879618
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.