These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 8579826)

  • 1. Effects of growth environment on recombinant plasmid stability in Saccharomyces cerevisiae grown in continuous culture.
    O'Kennedy R; Houghton CJ; Patching JW
    Appl Microbiol Biotechnol; 1995 Dec; 44(1-2):126-32. PubMed ID: 8579826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of medium composition and nutrient limitation on loss of the recombinant plasmid pLG669-z and beta-galactosidase expression by Saccharomyces cerevisiae.
    O'Kennedy RD; Patching JW
    J Ind Microbiol Biotechnol; 1997 May; 18(5):319-25. PubMed ID: 9218361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmid instability in an industrial strain of Bacillus subtilis grown in chemostat culture.
    Fleming GT; Patching JW
    J Ind Microbiol; 1994 Mar; 13(2):106-11. PubMed ID: 7764670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The segregation of the 2 mu-based yeast plasmid pJDB248 breaks down under conditions of slow, glucose-limited growth.
    Bugeja VC; Kleinman MJ; Stanbury PF; Gingold EB
    J Gen Microbiol; 1989 Nov; 135(11):2891-7. PubMed ID: 2693590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability studies of recombinant Saccharomyces cerevisiae in the presence of varying selection pressure.
    Gupta JC; Mukherjee KJ
    Biotechnol Bioeng; 2002 Jun; 78(5):475-88. PubMed ID: 12115116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The isolation of strains of Saccharomyces cerevisiae showing altered plasmid stability characteristics by means of selective continuous culture.
    O'Kennedy RD; Patching JW
    J Biotechnol; 1999 Apr; 69(2-3):203-14. PubMed ID: 10361727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of a cloned gene in yeast grown in chemostat culture.
    Walmsley RM; Gardner DC; Oliver SG
    Mol Gen Genet; 1983; 192(3):361-5. PubMed ID: 6361487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the level of plasmid-bearing cells in transformed cultures of Saccharomyces cerevisiae.
    Guerrini AM; Boglione C; Ascenzioni F; Donini P
    Yeast; 1991 Dec; 7(9):943-52. PubMed ID: 1803819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of continuous GM-CSF production by recombinant Saccharomyces cerevisiae in an airlift bioreactor.
    Shu CH; Yang ST
    J Biotechnol; 1996 Jul; 48(1-2):107-16. PubMed ID: 8818277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmid stability and kinetics of continuous production of glucoamylase by recombinant Saccharomyces cerevisiae in an airlift bioreactor.
    Kilonzo PM; Margaritis A; Bergougnou MA
    J Ind Microbiol Biotechnol; 2009 Sep; 36(9):1157-69. PubMed ID: 19504139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of phosphoglycerate kinase overproduction in Saccharomyces cerevisiae on the physiology and plasmid stability.
    van der Aar PC; van den Heuvel JJ; Röling WF; Raué HA; Stouthamer AH; van Verseveld HW
    Yeast; 1992 Jan; 8(1):47-55. PubMed ID: 1580100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmid instability kinetics in continuous culture of a recombinant Saccharomyces cerevisiae in airlift bioreactor.
    Zhang Z; Scharer JM; Moo-Young M
    J Biotechnol; 1997 May; 55(1):31-41. PubMed ID: 9226960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the effect of growth environment on the stability of low-copy-number plasmids in Escherichia coli.
    Caulcott CA; Dunn A; Robertson HA; Cooper NS; Brown ME; Rhodes PM
    J Gen Microbiol; 1987 Jul; 133(7):1881-9. PubMed ID: 3312485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae].
    Qu N; He XP; Guo XN; Liu N; Zhang BR
    Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):38-42. PubMed ID: 16579462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic and aerobic continuous cultures of Saccharomyces cerevisiae: comparison of plasmid stability and EXG1 gene expression.
    Lú-Chau TA; Guillán A; Núñez MJ; Roca E; Lema JM
    Bioprocess Biosyst Eng; 2004 Apr; 26(3):159-63. PubMed ID: 14986091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The yeast 2 micron plasmid: strategies for the survival of a selfish DNA.
    Mead DJ; Gardner DC; Oliver SG
    Mol Gen Genet; 1986 Dec; 205(3):417-21. PubMed ID: 3550381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of growth rate and expression level on plasmid stability in Saccharomyces cerevisiae.
    Parker C; Dibiasio D
    Biotechnol Bioeng; 1987 Feb; 29(2):215-21. PubMed ID: 18576378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insufficient uracil supply in fully aerobic chemostat cultures of Saccharomyces cerevisiae leads to respiro-fermentative metabolism and double nutrient-limitation.
    Basso TO; Dario MG; Tonso A; Stambuk BU; Gombert AK
    Biotechnol Lett; 2010 Jul; 32(7):973-7. PubMed ID: 20349336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Introduction of nonselectible 2 mu plasmid into [cir(o)] cells of the yeast S. cerevisiae by DNA transformation and in vivo site-specific resolution.
    Bruschi CV; Ludwig DL
    Curr Genet; 1989 Feb; 15(2):83-90. PubMed ID: 2663192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 2-micron vectors containing the Saccharomyces cerevisiae metallothionein gene as a selectable marker: excellent stability in complex media, and high-level expression of a recombinant protein from a CUP1-promoter-controlled expression cassette in cis.
    Hottiger T; Kuhla J; Pohlig G; Fürst P; Spielmann A; Garn M; Haemmerli S; Heim J
    Yeast; 1995 Jan; 11(1):1-14. PubMed ID: 7762296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.