BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 8579835)

  • 1. Degradation of stachyose, raffinose, melibiose and sucrose by different tempe-producing Rhizopus fungi.
    Rehms H; Barz W
    Appl Microbiol Biotechnol; 1995 Dec; 44(1-2):47-52. PubMed ID: 8579835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The
    Morabbi Heravi K; Watzlawick H; Altenbuchner J
    J Bacteriol; 2019 Aug; 201(15):. PubMed ID: 31138628
    [No Abstract]   [Full Text] [Related]  

  • 3. Metabolism of four α-glycosidic linkage-containing oligosaccharides by Bifidobacterium breve UCC2003.
    O'Connell KJ; O'Connell Motherway M; O'Callaghan J; Fitzgerald GF; Ross RP; Ventura M; Stanton C; van Sinderen D
    Appl Environ Microbiol; 2013 Oct; 79(20):6280-92. PubMed ID: 23913435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catabolism of raffinose, sucrose, and melibiose in Erwinia chrysanthemi 3937.
    Hugouvieux-Cotte-Pattat N; Charaoui-Boukerzaza S
    J Bacteriol; 2009 Nov; 191(22):6960-7. PubMed ID: 19734309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Levansucrase and sucrose phoshorylase contribute to raffinose, stachyose, and verbascose metabolism by lactobacilli.
    Teixeira JS; McNeill V; Gänzle MG
    Food Microbiol; 2012 Sep; 31(2):278-84. PubMed ID: 22608234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracellular melibiose and fructose are intermediates in raffinose catabolism during fermentation to ethanol by engineered enteric bacteria.
    Moniruzzaman M; Lai X; York SW; Ingram LO
    J Bacteriol; 1997 Mar; 179(6):1880-6. PubMed ID: 9068632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of vitamins by pure cultures of tempe moulds and bacteria during the tempe solid substrate fermentation.
    Keuth S; Bisping B
    J Appl Bacteriol; 1993 Nov; 75(5):427-34. PubMed ID: 8300444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Secondary metabolite and mycotoxin production by the Rhizopus microsporus group.
    Jennessen J; Nielsen KF; Houbraken J; Lyhne EK; Schnürer J; Frisvad JC; Samson RA
    J Agric Food Chem; 2005 Mar; 53(5):1833-40. PubMed ID: 15740082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymic hydrolysis of raffinose and stachyose in soymilk by alpha-galactosidase from Gibberella fujikuroi.
    Mulimani VH; Ramalingam
    Biochem Mol Biol Int; 1995 Jul; 36(4):897-905. PubMed ID: 8528153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological characteristics of sporangiospores of the tempe fungus Rhizopus oligosporus differentiate it from other taxa of the R. microsporus group.
    Jennessen J; Schnürer J; Olsson J; Samson RA; Dijksterhuis J
    Mycol Res; 2008 May; 112(Pt 5):547-63. PubMed ID: 18400482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on the production of bambara groundnut (Vigna subterranea) tempe.
    Amadi EN; Uneze R; Barimalaa IS; Achinewhu SC
    Plant Foods Hum Nutr; 1999; 53(3):199-208. PubMed ID: 10517279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular alpha-galactosidase from Debaryomyces hansenii UFV-1 and its use in the hydrolysis of raffinose oligosaccharides.
    Viana PA; de Rezende ST; Marques VM; Trevizano LM; Passos FM; Oliveira MG; Bemquerer MP; Oliveira JS; Guimarães VM
    J Agric Food Chem; 2006 Mar; 54(6):2385-91. PubMed ID: 16536623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Composition and metabolism of fecal microbiota from normal and overweight children are differentially affected by melibiose, raffinose and raffinose-derived fructans.
    Adamberg K; Adamberg S; Ernits K; Larionova A; Voor T; Jaagura M; Visnapuu T; Alamäe T
    Anaerobe; 2018 Aug; 52():100-110. PubMed ID: 29935270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of alpha-galactooligosaccharides with alpha-galactosidase from Lactobacillus reuteri of canine origin.
    Tzortzis G; Jay AJ; Baillon ML; Gibson GR; Rastall RA
    Appl Microbiol Biotechnol; 2003 Dec; 63(3):286-92. PubMed ID: 12955354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The production of a new tempeh-like fermented soybean containing a high level of gamma-aminobutyric acid by anaerobic incubation with Rhizopus.
    Aoki H; Uda I; Tagami K; Furuya Y; Endo Y; Fujimoto K
    Biosci Biotechnol Biochem; 2003 May; 67(5):1018-23. PubMed ID: 12834278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Genetic analysis of raffinose utilization in Escherichia coli K12 and relation to K88 surface antigen].
    Alaeddinoğlu GN
    Mikrobiyol Bul; 1982 Jan; 16(1):21-32. PubMed ID: 6755198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fermentation of non-digestible raffinose family oligosaccharides and galactomannans by probiotics.
    Zartl B; Silberbauer K; Loeppert R; Viernstein H; Praznik W; Mueller M
    Food Funct; 2018 Mar; 9(3):1638-1646. PubMed ID: 29465736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Changes of transport sugar content in different organs of Rehmannia glutinosa].
    Wang DH; Liao N; Sun P; Ji XQ; Li XE; Qin MJ
    Zhongguo Zhong Yao Za Zhi; 2018 Apr; 43(8):1563-1570. PubMed ID: 29751701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and structural elucidation of prebiotic oligosaccharides from Ziziphi Spinosae Semen.
    Song J; Liu Y; Yin X; Nan Y; Shi Y; Chen X; Liang H; Zhang J; Ma B
    Carbohydr Res; 2023 Dec; 534():108948. PubMed ID: 37783055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen production in the rat following ingestion of raffinose, stachyose and oligosaccharide-free bean residue.
    Wagner JR; Becker R; Gumbmann MR; Olson AC
    J Nutr; 1976 Apr; 106(4):466-70. PubMed ID: 1255266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.