These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 8580089)

  • 1. The liquid amide transfer model and the unfolding thermodynamics of small globular proteins.
    Barone G; del Vecchio P; Giancola C; Graziano G
    Int J Biol Macromol; 1995 Oct; 17(5):251-7. PubMed ID: 8580089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solid model compounds and the thermodynamics of protein unfolding.
    Murphy KP; Gill SJ
    J Mol Biol; 1991 Dec; 222(3):699-709. PubMed ID: 1660931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of liquid hydrocarbon and amide transfer data to estimate contributions to thermodynamic functions of protein folding from the removal of nonpolar and polar surface from water.
    Spolar RS; Livingstone JR; Record MT
    Biochemistry; 1992 Apr; 31(16):3947-55. PubMed ID: 1567847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the dissection of the unfolding reaction by the dissolution thermodynamics of N-alkyl amides.
    Ragone R
    Int J Biol Macromol; 2002 Dec; 31(1-3):103-9. PubMed ID: 12559433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydration and heat stability effects on protein unfolding.
    Oobatake M; Ooi T
    Prog Biophys Mol Biol; 1993; 59(3):237-84. PubMed ID: 8441810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenomenological similarities between protein denaturation and small-molecule dissolution: Insights into the mechanism driving the thermal resistance of globular proteins.
    Ragone R
    Proteins; 2004 Feb; 54(2):323-32. PubMed ID: 14696194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of hydration to protein folding thermodynamics. I. The enthalpy of hydration.
    Makhatadze GI; Privalov PL
    J Mol Biol; 1993 Jul; 232(2):639-59. PubMed ID: 8393940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water transfer energetics and solid-like packing of globular proteins.
    Ragone R; Stiuso P; Colonna G
    Proteins; 1996 Mar; 24(3):388-93. PubMed ID: 8778786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetics of hydrogen bonding in proteins: a model compound study.
    Habermann SM; Murphy KP
    Protein Sci; 1996 Jul; 5(7):1229-39. PubMed ID: 8819156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamics of the temperature-induced unfolding of globular proteins.
    Khechinashvili NN; Janin J; Rodier F
    Protein Sci; 1995 Jul; 4(7):1315-24. PubMed ID: 7670374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Urea effects on protein stability: hydrogen bonding and the hydrophobic effect.
    Zou Q; Habermann-Rottinghaus SM; Murphy KP
    Proteins; 1998 May; 31(2):107-15. PubMed ID: 9593185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of the maximal stability temperature of monomeric globular proteins solely from amino acid sequence.
    Ganesh C; Eswar N; Srivastava S; Ramakrishnan C; Varadarajan R
    FEBS Lett; 1999 Jul; 454(1-2):31-6. PubMed ID: 10413090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamics of denaturation of barstar: evidence for cold denaturation and evaluation of the interaction with guanidine hydrochloride.
    Agashe VR; Udgaonkar JB
    Biochemistry; 1995 Mar; 34(10):3286-99. PubMed ID: 7880824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino acid substitutions affecting protein dynamics in eglin C do not affect heat capacity change upon unfolding.
    Gribenko AV; Keiffer TR; Makhatadze GI
    Proteins; 2006 Aug; 64(2):295-300. PubMed ID: 16705642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A reassessment of the molecular origin of cold denaturation.
    Graziano G; Catanzano F; Riccio A; Barone G
    J Biochem; 1997 Aug; 122(2):395-401. PubMed ID: 9378719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The nature of the free energy barriers to two-state folding.
    Akmal A; Muñoz V
    Proteins; 2004 Oct; 57(1):142-52. PubMed ID: 15326600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the heat capacity dependence of protein folding.
    Yang AS; Sharp KA; Honig B
    J Mol Biol; 1992 Oct; 227(3):889-900. PubMed ID: 1404393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins.
    Hummer G; Garde S; García AE; Paulaitis ME; Pratt LR
    Proc Natl Acad Sci U S A; 1998 Feb; 95(4):1552-5. PubMed ID: 9465053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic analysis of the folding of the streptococcal protein G IgG-binding domains B1 and B2: why small proteins tend to have high denaturation temperatures.
    Alexander P; Fahnestock S; Lee T; Orban J; Bryan P
    Biochemistry; 1992 Apr; 31(14):3597-603. PubMed ID: 1567818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The entropic nature of protein thermal stabilization.
    Khechinashvili NN; Capital Ka Cyrillicabanov AV; Kondratyev MS; Polozov RV
    J Biomol Struct Dyn; 2014; 32(9):1396-405. PubMed ID: 23879480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.