These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 8580316)

  • 1. Conformation and hydrogen ion titration of proteins: a continuum electrostatic model with conformational flexibility.
    You TJ; Bashford D
    Biophys J; 1995 Nov; 69(5):1721-33. PubMed ID: 8580316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Explicit solvent models in protein pKa calculations.
    Gibas CJ; Subramaniam S
    Biophys J; 1996 Jul; 71(1):138-47. PubMed ID: 8804597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporating protein conformational flexibility into the calculation of pH-dependent protein properties.
    Alexov EG; Gunner MR
    Biophys J; 1997 May; 72(5):2075-93. PubMed ID: 9129810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculations of electrostatic interactions and pKas in the active site of Escherichia coli thioredoxin.
    Dillet V; Dyson HJ; Bashford D
    Biochemistry; 1998 Jul; 37(28):10298-306. PubMed ID: 9665738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of the individual pKa values of acidic residues of hen and turkey lysozymes by two-dimensional 1H NMR.
    Bartik K; Redfield C; Dobson CM
    Biophys J; 1994 Apr; 66(4):1180-4. PubMed ID: 8038389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pKa predictions for proteins, RNAs, and DNAs with the Gaussian dielectric function using DelPhi pKa.
    Wang L; Li L; Alexov E
    Proteins; 2015 Dec; 83(12):2186-97. PubMed ID: 26408449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanisms of pH-driven conformational transitions of proteins: insights from continuum electrostatics calculations of acid unfolding.
    Fitch CA; Whitten ST; Hilser VJ; GarcĂ­a-Moreno E B
    Proteins; 2006 Apr; 63(1):113-26. PubMed ID: 16400648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved pKa calculations through flexibility based sampling of a water-dominated interaction scheme.
    Warwicker J
    Protein Sci; 2004 Oct; 13(10):2793-805. PubMed ID: 15388865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental effects on the protonation states of active site residues in bacteriorhodopsin.
    Sampogna RV; Honig B
    Biophys J; 1994 May; 66(5):1341-52. PubMed ID: 8061190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multigrid solution of the nonlinear Poisson-Boltzmann equation and calculation of titration curves.
    Oberoi H; Allewell NM
    Biophys J; 1993 Jul; 65(1):48-55. PubMed ID: 8369451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatic calculations of the pKa values of ionizable groups in bacteriorhodopsin.
    Bashford D; Gerwert K
    J Mol Biol; 1992 Mar; 224(2):473-86. PubMed ID: 1313886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrostatic forces in two lysozymes: calculations and measurements of histidine pKa values.
    Takahashi T; Nakamura H; Wada A
    Biopolymers; 1992 Aug; 32(8):897-909. PubMed ID: 1420975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pKa's of ionizable groups in proteins: atomic detail from a continuum electrostatic model.
    Bashford D; Karplus M
    Biochemistry; 1990 Nov; 29(44):10219-25. PubMed ID: 2271649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupled molecular dynamics and continuum electrostatic method to compute the ionization pKa's of proteins as a function of pH. Test on a large set of proteins.
    Vorobjev YN; Scheraga HA; Vila JA
    J Biomol Struct Dyn; 2018 Feb; 36(3):561-574. PubMed ID: 28132613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of electron-proton coupling with a Monte Carlo method: application to cytochrome c3 using continuum electrostatics.
    Baptista AM; Martel PJ; Soares CM
    Biophys J; 1999 Jun; 76(6):2978-98. PubMed ID: 10354425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward accurate prediction of pKa values for internal protein residues: the importance of conformational relaxation and desolvation energy.
    Wallace JA; Wang Y; Shi C; Pastoor KJ; Nguyen BL; Xia K; Shen JK
    Proteins; 2011 Dec; 79(12):3364-73. PubMed ID: 21748801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure, dynamics and electrostatics of the active site of glutaredoxin 3 from Escherichia coli: comparison with functionally related proteins.
    Foloppe N; Sagemark J; Nordstrand K; Berndt KD; Nilsson L
    J Mol Biol; 2001 Jul; 310(2):449-70. PubMed ID: 11428900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the accuracy of protein pKa calculations: conformational averaging versus the average structure.
    van Vlijmen HW; Schaefer M; Karplus M
    Proteins; 1998 Nov; 33(2):145-58. PubMed ID: 9779784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pKa calculations in solution and proteins with QM/MM free energy perturbation simulations: a quantitative test of QM/MM protocols.
    Riccardi D; Schaefer P; Cui Q
    J Phys Chem B; 2005 Sep; 109(37):17715-33. PubMed ID: 16853267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrostatic calculations of amino acid titration and electron transfer, Q-AQB-->QAQ-B, in the reaction center.
    Beroza P; Fredkin DR; Okamura MY; Feher G
    Biophys J; 1995 Jun; 68(6):2233-50. PubMed ID: 7647231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.