These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 8580317)

  • 21. Selectivity of amino acid transmitters acting at N-methyl-D-aspartate and amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors.
    Curras MC; Dingledine R
    Mol Pharmacol; 1992 Mar; 41(3):520-6. PubMed ID: 1372086
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors.
    Fellin T; Pascual O; Gobbo S; Pozzan T; Haydon PG; Carmignoto G
    Neuron; 2004 Sep; 43(5):729-43. PubMed ID: 15339653
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NMDA receptors amplify calcium influx into dendritic spines during associative pre- and postsynaptic activation.
    Schiller J; Schiller Y; Clapham DE
    Nat Neurosci; 1998 Jun; 1(2):114-8. PubMed ID: 10195125
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Receptor compartmentalization and trafficking at glutamate synapses: a developmental proposal.
    van Zundert B; Yoshii A; Constantine-Paton M
    Trends Neurosci; 2004 Jul; 27(7):428-37. PubMed ID: 15219743
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Potentiation of the NMDA receptor-mediated responses through the activation of the glycine site by microglia secreting soluble factors.
    Hayashi Y; Ishibashi H; Hashimoto K; Nakanishi H
    Glia; 2006 Apr; 53(6):660-8. PubMed ID: 16498631
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents.
    Lester RA; Clements JD; Westbrook GL; Jahr CE
    Nature; 1990 Aug; 346(6284):565-7. PubMed ID: 1974037
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence that 3-hydroxyglutaric acid interacts with NMDA receptors in synaptic plasma membranes from cerebral cortex of young rats.
    Rosa RB; Schwarzbold C; Dalcin KB; Ghisleni GC; Ribeiro CA; Moretto MB; Frizzo ME; Hoffmann GF; Souza DO; Wajner M
    Neurochem Int; 2004 Dec; 45(7):1087-94. PubMed ID: 15337308
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential mechanisms of Ca2+ responses in glial cells evoked by exogenous and endogenous glutamate in rat hippocampus.
    Latour I; Gee CE; Robitaille R; Lacaille JC
    Hippocampus; 2001; 11(2):132-45. PubMed ID: 11345120
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fusion pore modulation as a presynaptic mechanism contributing to expression of long-term potentiation.
    Choi S; Klingauf J; Tsien RW
    Philos Trans R Soc Lond B Biol Sci; 2003 Apr; 358(1432):695-705. PubMed ID: 12740115
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ionotropic glutamate receptor activated by N-methyl-D-aspartate: a key molecule of conscious life.
    Lareo LR; Corredor C
    Med Hypotheses; 2004; 63(2):245-9. PubMed ID: 15236783
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Long-term potentiation and contextual fear conditioning increase neuronal glutamate uptake.
    Levenson J; Weeber E; Selcher JC; Kategaya LS; Sweatt JD; Eskin A
    Nat Neurosci; 2002 Feb; 5(2):155-61. PubMed ID: 11788834
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional proteins involved in regulation of intracellular Ca(2+) for drug development: desensitization of N-methyl-D-aspartate receptor channels.
    Nakamichi N; Yoneda Y
    J Pharmacol Sci; 2005 Mar; 97(3):348-50. PubMed ID: 15764843
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Control of cleft glutamate concentration and glutamate spill-out by perisynaptic glia: uptake and diffusion barriers.
    Kessler JP
    PLoS One; 2013; 8(8):e70791. PubMed ID: 23951010
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Brownian model of glutamate diffusion in excitatory synapses of hippocampus.
    Ventriglia F; Di Maio V
    Biosystems; 2000; 58(1-3):67-74. PubMed ID: 11164632
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Output-based comparison of alternative kinetic schemes for the NMDA receptor within a glutamate spillover model.
    Mitchell CS; Lee RH
    J Neural Eng; 2007 Dec; 4(4):380-9. PubMed ID: 18057505
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A fast model of voltage-dependent NMDA receptors.
    Moradi K; Moradi K; Ganjkhani M; Hajihasani M; Gharibzadeh S; Kaka G
    J Comput Neurosci; 2013 Jun; 34(3):521-31. PubMed ID: 23224774
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NMDA Receptors: Power Switches for Oligodendrocytes.
    Krasnow AM; Attwell D
    Neuron; 2016 Jul; 91(1):3-5. PubMed ID: 27387644
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A computational study on the role of glutamate and NMDA receptors on cortical spreading depression using a multidomain electrodiffusion model.
    Tuttle A; Riera Diaz J; Mori Y
    PLoS Comput Biol; 2019 Dec; 15(12):e1007455. PubMed ID: 31790388
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The narrow escape problem for diffusion in cellular microdomains.
    Schuss Z; Singer A; Holcman D
    Proc Natl Acad Sci U S A; 2007 Oct; 104(41):16098-103. PubMed ID: 17901203
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deciphering GRINA/Lifeguard1: Nuclear Location, Ca
    Jiménez-González V; Ogalla-García E; García-Quintanilla M; García-Quintanilla A
    Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31426446
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.