These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
304 related articles for article (PubMed ID: 8580354)
21. The last phase of the reprotonation switch in bacteriorhodopsin: the transition between the M-type and the N-type protein conformation depends on hydration. Kamikubo H; Oka T; Imamoto Y; Tokunaga F; Lanyi JK; Kataoka M Biochemistry; 1997 Oct; 36(40):12282-7. PubMed ID: 9315867 [TBL] [Abstract][Full Text] [Related]
22. A linkage of the pKa's of asp-85 and glu-204 forms part of the reprotonation switch of bacteriorhodopsin. Richter HT; Brown LS; Needleman R; Lanyi JK Biochemistry; 1996 Apr; 35(13):4054-62. PubMed ID: 8672439 [TBL] [Abstract][Full Text] [Related]
23. Molecular dynamics study of the proton pump cycle of bacteriorhodopsin. Zhou F; Windemuth A; Schulten K Biochemistry; 1993 Mar; 32(9):2291-306. PubMed ID: 8443172 [TBL] [Abstract][Full Text] [Related]
24. Estimated acid dissociation constants of the Schiff base, Asp-85, and Arg-82 during the bacteriorhodopsin photocycle. Brown LS; Bonet L; Needleman R; Lanyi JK Biophys J; 1993 Jul; 65(1):124-30. PubMed ID: 8369421 [TBL] [Abstract][Full Text] [Related]
25. Local-access model for proton transfer in bacteriorhodopsin. Brown LS; Dioumaev AK; Needleman R; Lanyi JK Biochemistry; 1998 Mar; 37(11):3982-93. PubMed ID: 9521720 [TBL] [Abstract][Full Text] [Related]
27. A three-dimensional difference map of the N intermediate in the bacteriorhodopsin photocycle: part of the F helix tilts in the M to N transition. Vonck J Biochemistry; 1996 May; 35(18):5870-8. PubMed ID: 8639548 [TBL] [Abstract][Full Text] [Related]
28. Effective light-induced hydroxylamine reactions occur with C13 = C14 nonisomerizable bacteriorhodopsin pigments. Rousso I; Gat Y; Lewis A; Sheves M; Ottolenghi M Biophys J; 1998 Jul; 75(1):413-7. PubMed ID: 9649399 [TBL] [Abstract][Full Text] [Related]
29. Significance of low-frequency local fluctuation motions in the transmembrane B and C alpha-helices of bacteriorhodopsin, to facilitate efficient proton uptake from the cytoplasmic surface, as revealed by site-directed solid-state 13C NMR. Kira A; Tanio M; Tuzi S; Saitô H Eur Biophys J; 2004 Nov; 33(7):580-8. PubMed ID: 15133647 [TBL] [Abstract][Full Text] [Related]
30. Proton translocation mechanism and energetics in the light-driven pump bacteriorhodopsin. Lanyi JK Biochim Biophys Acta; 1993 Dec; 1183(2):241-61. PubMed ID: 8268193 [TBL] [Abstract][Full Text] [Related]
31. The retinal Schiff base-counterion complex of bacteriorhodopsin: changed geometry during the photocycle is a cause of proton transfer to aspartate 85. Brown LS; Gat Y; Sheves M; Yamazaki Y; Maeda A; Needleman R; Lanyi JK Biochemistry; 1994 Oct; 33(40):12001-11. PubMed ID: 7918419 [TBL] [Abstract][Full Text] [Related]
32. Crystal structures of archaerhodopsin-1 and -2: Common structural motif in archaeal light-driven proton pumps. Enami N; Yoshimura K; Murakami M; Okumura H; Ihara K; Kouyama T J Mol Biol; 2006 May; 358(3):675-85. PubMed ID: 16540121 [TBL] [Abstract][Full Text] [Related]
33. Chemical and physical evidence for multiple functional steps comprising the M state of the bacteriorhodopsin photocycle. Betancourt FM; Glaeser RM Biochim Biophys Acta; 2000 Aug; 1460(1):106-18. PubMed ID: 10984594 [TBL] [Abstract][Full Text] [Related]
34. Water-mediated hydrogen-bonded network on the cytoplasmic side of the Schiff base of the L photointermediate of bacteriorhodopsin. Maeda A; Herzfeld J; Belenky M; Needleman R; Gennis RB; Balashov SP; Ebrey TG Biochemistry; 2003 Dec; 42(48):14122-9. PubMed ID: 14640679 [TBL] [Abstract][Full Text] [Related]
35. Threonine-89 participates in the active site of bacteriorhodopsin: evidence for a role in color regulation and Schiff base proton transfer. Russell TS; Coleman M; Rath P; Nilsson A; Rothschild KJ Biochemistry; 1997 Jun; 36(24):7490-7. PubMed ID: 9200698 [TBL] [Abstract][Full Text] [Related]
36. Relationship of proton release at the extracellular surface to deprotonation of the schiff base in the bacteriorhodopsin photocycle. Cao Y; Brown LS; Sasaki J; Maeda A; Needleman R; Lanyi JK Biophys J; 1995 Apr; 68(4):1518-30. PubMed ID: 7787037 [TBL] [Abstract][Full Text] [Related]
37. Crystal structure of the D85S mutant of bacteriorhodopsin: model of an O-like photocycle intermediate. Rouhani S; Cartailler JP; Facciotti MT; Walian P; Needleman R; Lanyi JK; Glaeser RM; Luecke H J Mol Biol; 2001 Oct; 313(3):615-28. PubMed ID: 11676543 [TBL] [Abstract][Full Text] [Related]
38. [Photochemical properties of a bacteriorhodopsin analogue containing 13-desmethyl-13-(trifluoromethyl)retinal]. Lukashev EP; Pronskaia NA Biofizika; 2006; 51(3):446-53. PubMed ID: 16808343 [TBL] [Abstract][Full Text] [Related]
39. Mechanism of proton transport in bacteriorhodopsin from crystallographic structures of the K, L, M1, M2, and M2' intermediates of the photocycle. Lanyi JK; Schobert B J Mol Biol; 2003 Apr; 328(2):439-50. PubMed ID: 12691752 [TBL] [Abstract][Full Text] [Related]
40. Effects of tryptophan mutation on the deprotonation and reprotonation kinetics of the Schiff base during the photocycle of bacteriorhodopsin. Wu S; Chang Y; el-Sayed MA; Marti T; Mogi T; Khorana HG Biophys J; 1992 May; 61(5):1281-8. PubMed ID: 1318094 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]