These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 8580540)

  • 1. Compressive stress relaxation behavior of irradiated ultra-high molecular weight polyethylene at 37 degrees C.
    Waldman SD; Bryant JT
    J Appl Biomater; 1994; 5(4):333-8. PubMed ID: 8580540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A nonlinear viscoelastic finite element model of polyethylene.
    Chen PC; Colwell CW; D'Lima DD
    Mol Cell Biomech; 2011 Jun; 8(2):135-48. PubMed ID: 21608414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gamma-irradiation aggravates stress concentration along subsurface grain boundary of ultra-high molecular weight polyethylene (UHMWPE) under sliding fatigue environment.
    Shibata N; Tomita N; Ikeuchi K
    Biomed Mater Eng; 2003; 13(1):35-45. PubMed ID: 12652021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deformation, yielding, fracture and fatigue behavior of conventional and highly cross-linked ultra high molecular weight polyethylene.
    Pruitt LA
    Biomaterials; 2005 Mar; 26(8):905-15. PubMed ID: 15353202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of crosslinking UHMWPE on its tensile and compressive creep performance.
    Lewis G; Carroll M
    Biomed Mater Eng; 2001; 11(3):167-83. PubMed ID: 11564901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical characterization of ultra-high molecular weight polyethylene-hydroxyapatite nanocomposites.
    Crowley J; Chalivendra VB
    Biomed Mater Eng; 2008; 18(3):149-60. PubMed ID: 18725695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exponential model for the tensile true stress-strain behavior of as-irradiated and oxidatively degraded ultra high molecular weight polyethylene.
    Kurtz SM; Rimnac CM; Santner TJ; Bartel DL
    J Orthop Res; 1996 Sep; 14(5):755-61. PubMed ID: 8893769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscopic destruction of ultra-high molecular weight polyethylene (UHMWPE) under uniaxial tension.
    Shibata N; Tomita N; Ikeuchi K
    Biomed Mater Eng; 2003; 13(1):47-57. PubMed ID: 12652022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel ultra high molecular weight polyethylene-hyaluronan microcomposite for use in total joint replacements. I. Synthesis and physical/chemical characterization.
    Zhang M; King R; Hanes M; James SP
    J Biomed Mater Res A; 2006 Jul; 78(1):86-96. PubMed ID: 16602125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of the nanostructure and tensile properties of ultra-high molecular weight polyethylene.
    Turell MB; Bellare A
    Biomaterials; 2004 Aug; 25(17):3389-98. PubMed ID: 15020111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermomechanical behavior of virgin and highly crosslinked ultra-high molecular weight polyethylene used in total joint replacements.
    Kurtz SM; Villarraga ML; Herr MP; Bergström JS; Rimnac CM; Edidin AA
    Biomaterials; 2002 Sep; 23(17):3681-97. PubMed ID: 12109694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the in vivo wear rates of 43 surgically retrieved direct compression molded and ram extruded ultra high molecular weight polyethylene acetabular components.
    Rentfrow ED; James SP; Beauregard GP; Lee KR; McLaughlin JR
    Biomed Sci Instrum; 1996; 32():135-41. PubMed ID: 8672661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of strain rate and low-gamma irradiation on the compressive properties of UHMWPE.
    Kobayashi K; Kakinoki T; Sakamoto M; Tanabe Y
    Biomed Mater Eng; 2007; 17(2):87-95. PubMed ID: 17377217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatigue crack propagation resistance of virgin and highly crosslinked, thermally treated ultra-high molecular weight polyethylene.
    Gencur SJ; Rimnac CM; Kurtz SM
    Biomaterials; 2006 Mar; 27(8):1550-7. PubMed ID: 16303175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical simulations on fatigue destruction of ultra-high molecular weight polyethylene using discrete element analyses.
    Shibata N; Tomita N; Ikeuchi K
    J Biomed Mater Res A; 2003 Mar; 64(3):570-82. PubMed ID: 12579572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface micromechanics of ultrahigh molecular weight polyethylene: Microindentation testing, crosslinking, and material behavior.
    Gilbert JL; Cumber J; Butterfield A
    J Biomed Mater Res; 2002 Aug; 61(2):270-81. PubMed ID: 12007208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel ultra high molecular weight polyethylene-hyaluronan microcomposite for use in total joint replacements. II. Mechanical and tribological property evaluation.
    Zhang M; Pare P; King R; James SP
    J Biomed Mater Res A; 2007 Jul; 82(1):18-26. PubMed ID: 17265440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the mechanical properties of a new grade of ultra high molecular weight polyethylene and modeling with the viscoplasticity based on overstress.
    Khan F; Yeakle C; Gomaa S
    J Mech Behav Biomed Mater; 2012 Feb; 6():174-80. PubMed ID: 22301187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of sliding locus on subsurface crack formation in ultra-high-molecular-weight polyethylene knee component.
    Todo S; Tomita N; Kitakura T; Yamano Y
    Biomed Mater Eng; 1999; 9(1):13-20. PubMed ID: 10436849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of an accelerated aging protocol on viscoelastic properties of UHMWPE.
    Lewis G
    Biomed Mater Eng; 2002; 12(3):299-308. PubMed ID: 12446945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.