BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 8580907)

  • 1. A new dominant selectable marker for genetic transformation; Hsp70-opd.
    Benedict MQ; Salazar CE; Collins FH
    Insect Biochem Mol Biol; 1995 Dec; 25(10):1061-5. PubMed ID: 8580907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transfer and expression of an organophosphate insecticide-degrading gene from Pseudomonas in Drosophila melanogaster.
    Phillips JP; Xin JH; Kirby K; Milne CP; Krell P; Wild JR
    Proc Natl Acad Sci U S A; 1990 Oct; 87(20):8155-9. PubMed ID: 2172975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-level expression of the bacterial opd gene in Drosophila melanogaster: improved inducible insecticide resistance.
    Benedict MQ; Scott JA; Cockburn AF
    Insect Mol Biol; 1994 Nov; 3(4):247-52. PubMed ID: 7704308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The rough (ro+) gene as a dominant P-element marker in germ line transformation of Drosophila melanogaster.
    Lockett TJ; Lewy D; Holmes P; Medveczky K; Saint R
    Gene; 1992 May; 114(2):187-93. PubMed ID: 1601302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The white gene as a marker in a new P-element vector for gene transfer in Drosophila.
    Klemenz R; Weber U; Gehring WJ
    Nucleic Acids Res; 1987 May; 15(10):3947-59. PubMed ID: 3108854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of Pseudomonas phosphotriesterase activity in the fall armyworm confers resistance to insecticides.
    Dumas DP; Wild JR; Raushel FM
    Experientia; 1990 Jul; 46(7):729-31. PubMed ID: 2164956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. piggyBac-mediated transposition in Drosophila melanogaster: an evaluation of the use of constitutive promoters to control transposase gene expression.
    Li X; Heinrich JC; Scott MJ
    Insect Mol Biol; 2001 Oct; 10(5):447-55. PubMed ID: 11881809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the activities of the medfly and Drosophila hsp70 promoters in vivo in germ-line transformed medflies.
    Kalosaka K; Chrysanthis G; Rojas-Gill AP; Theodoraki M; Gourzi P; Kyriakopoulos A; Tatari M; Zacharopoulou A; Mintzas AC
    Insect Mol Biol; 2006 Jun; 15(3):373-82. PubMed ID: 16756556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformation of cultured Drosophila melanogaster cells with a dominant selectable marker.
    Rio DC; Rubin GM
    Mol Cell Biol; 1985 Aug; 5(8):1833-8. PubMed ID: 3018529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat shock protein 70 from a thermotolerant Diptera species provides higher thermoresistance to Drosophila larvae than correspondent endogenous gene.
    Shilova VY; Zatsepina OG; Garbuz DG; Funikov SY; Zelentsova ES; Schostak NG; Kulikov AM; Evgen'ev MB
    Insect Mol Biol; 2018 Feb; 27(1):61-72. PubMed ID: 28796386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable transformation of insect cells to coexpress a rapidly selectable marker gene and an inhibitor of apoptosis.
    McLachlin JR; Miller LK
    In Vitro Cell Dev Biol Anim; 1997; 33(7):575-9. PubMed ID: 9282319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The bacterial paromomycin resistance gene, aphH, as a dominant selectable marker in Volvox carteri.
    Jakobiak T; Mages W; Scharf B; Babinger P; Stark K; Schmitt R
    Protist; 2004 Dec; 155(4):381-93. PubMed ID: 15648719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiplexed Transgenic Selection and Counterselection Strategies to Expedite Genetic Manipulation Workflows Using Drosophila melanogaster.
    Venken KJT; Matinyan N; Gonzalez Y; Dierick HA
    Curr Protoc; 2023 Feb; 3(2):e652. PubMed ID: 36757287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of core promoter sequences located downstream from the TATA element in the hsp70 promoter from Drosophila melanogaster.
    Wu CH; Madabusi L; Nishioka H; Emanuel P; Sypes M; Arkhipova I; Gilmour DS
    Mol Cell Biol; 2001 Mar; 21(5):1593-602. PubMed ID: 11238896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic deletions of the Drosophila melanogaster Hsp70 genes.
    Gong WJ; Golic KG
    Genetics; 2004 Nov; 168(3):1467-76. PubMed ID: 15579699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Preparation and primary genetic analysis of Drosophila melanogaster transformants line w'lz(b)/XXywf, containing mini-white genes, integrated in the genome during P-element-dependent transformation].
    Prokhorova AV; Voloshina MA; Shostak NG; Barskiĭ VE; Golubovskiĭ MD
    Genetika; 1994 Jul; 30(7):874-8. PubMed ID: 7958802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transposition-mediated transcriptional overexpression as a mechanism of insecticide resistance.
    Berrada S; Fournier D
    Mol Gen Genet; 1997 Oct; 256(4):348-54. PubMed ID: 9393432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative toxic potential of market formulation of two organophosphate pesticides in transgenic Drosophila melanogaster (hsp70-lacZ).
    Gupta SC; Siddique HR; Saxena DK; Chowdhuri DK
    Cell Biol Toxicol; 2005; 21(3-4):149-62. PubMed ID: 16328894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amplification of various esterase B's responsible for organophosphate resistance in Culex mosquitoes.
    Raymond M; Beyssat-Arnaouty V; Sivasubramanian N; Mouchès C; Georghiou GP; Pasteur N
    Biochem Genet; 1989 Aug; 27(7-8):417-23. PubMed ID: 2559713
    [No Abstract]   [Full Text] [Related]  

  • 20. Genetic variation for resistance to chlorpyrifos in Drosophila melanogaster (Diptera: Drosophilidae) infesting grapes in Israel.
    Ringo J; Jona G; Rockwell R; Segal D; Cohen E
    J Econ Entomol; 1995 Oct; 88(5):1158-63. PubMed ID: 7593893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.