These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 8581162)
1. Phylogenetic analyses of the homologous transmembrane channel-forming proteins of the F0F1-ATPases of bacteria, chloroplasts and mitochondria. Blair A; Ngo L; Park J; Paulsen IT; Saier MH Microbiology (Reading); 1996 Jan; 142 ( Pt 1)():17-32. PubMed ID: 8581162 [TBL] [Abstract][Full Text] [Related]
2. Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Gogarten JP; Kibak H; Dittrich P; Taiz L; Bowman EJ; Bowman BJ; Manolson MF; Poole RJ; Date T; Oshima T; Konishi J; Denda K; Yoshida M Proc Natl Acad Sci U S A; 1989 Sep; 86(17):6661-5. PubMed ID: 2528146 [TBL] [Abstract][Full Text] [Related]
3. P-type ATPases of eukaryotes and bacteria: sequence analyses and construction of phylogenetic trees. Fagan MJ; Saier MH J Mol Evol; 1994 Jan; 38(1):57-99. PubMed ID: 8151716 [TBL] [Abstract][Full Text] [Related]
4. [The evolutionary changes in the amino acid sequences and properties of the ATP-synthase in chloroplasts, mitochondria and bacteria]. Ivashchenko AT; Karpeniuk TA; Ponomarenko SV; Uteulin KR; Goncharova AV; Gabdulkhaeva BB; Zakarina AE Zh Evol Biokhim Fiziol; 1992; 28(3):287-97. PubMed ID: 1441793 [TBL] [Abstract][Full Text] [Related]
5. Structural aspects of proton-pumping ATPases. Walker JE; Fearnley IM; Lutter R; Todd RJ; Runswick MJ Philos Trans R Soc Lond B Biol Sci; 1990 Jan; 326(1236):367-78. PubMed ID: 1970643 [TBL] [Abstract][Full Text] [Related]
6. Evolution of organellar proton-ATPases. Nelson N Biochim Biophys Acta; 1992 May; 1100(2):109-24. PubMed ID: 1535221 [TBL] [Abstract][Full Text] [Related]
7. [ATP-synthase of bacteria, mitochondria, and chloroplasts. Properties of the F(0) membrane sector]. Ivashchenko AT; Karpeniuk TA; Ponomarenko SV Biokhimiia; 1991 Mar; 56(3):406-19. PubMed ID: 1832049 [TBL] [Abstract][Full Text] [Related]
8. cDNA sequence encoding the 16-kDa proteolipid of chromaffin granules implies gene duplication in the evolution of H+-ATPases. Mandel M; Moriyama Y; Hulmes JD; Pan YC; Nelson H; Nelson N Proc Natl Acad Sci U S A; 1988 Aug; 85(15):5521-4. PubMed ID: 2456571 [TBL] [Abstract][Full Text] [Related]
9. Molecular evolution of H+-ATPases. I. Methanococcus and Sulfolobus are monophyletic with respect to eukaryotes and Eubacteria. Gogarten JP; Rausch T; Bernasconi P; Kibak H; Taiz L Z Naturforsch C J Biosci; 1989; 44(7-8):641-50. PubMed ID: 2528356 [TBL] [Abstract][Full Text] [Related]
10. Cloning, sequencing and in vivo expression of genes encoding the F0 part of the sodium-ion-dependent ATP synthase of Propionigenium modestum in Escherichia coli. Kaim G; Ludwig W; Dimroth P; Schleifer KH Eur J Biochem; 1992 Jul; 207(2):463-70. PubMed ID: 1386022 [TBL] [Abstract][Full Text] [Related]
11. Cloning and sequencing of the genes coding for the A and B subunits of vacuolar-type Na(+)-ATPase from Enterococcus hirae. Coexistence of vacuolar- and F0F1-type ATPases in one bacterial cell. Takase K; Yamato I; Kakinuma Y J Biol Chem; 1993 Jun; 268(16):11610-6. PubMed ID: 8505293 [TBL] [Abstract][Full Text] [Related]
12. The cDNA sequence of the 69-kDa subunit of the carrot vacuolar H+-ATPase. Homology to the beta-chain of F0F1-ATPases. Zimniak L; Dittrich P; Gogarten JP; Kibak H; Taiz L J Biol Chem; 1988 Jul; 263(19):9102-12. PubMed ID: 2897965 [TBL] [Abstract][Full Text] [Related]
13. Detecting changes in the functional constraints of paralogous genes. Marín I; Fares MA; González-Candelas F; Barrio E; Moya A J Mol Evol; 2001 Jan; 52(1):17-28. PubMed ID: 11139291 [TBL] [Abstract][Full Text] [Related]
14. Subunit delta of chloroplast F0F1-ATPase and OSCP of mitochondrial F0F1-ATPase: a comparison by CD-spectroscopy. Engelbrecht S; Reed J; Penin F; Gautheron DC; Junge W Z Naturforsch C J Biosci; 1991; 46(9-10):759-64. PubMed ID: 1836327 [TBL] [Abstract][Full Text] [Related]
15. Sequence of Prochloron didemni atpBE and the inference of chloroplast origins. Lockhart PJ; Beanland TJ; Howe CJ; Larkum AW Proc Natl Acad Sci U S A; 1992 Apr; 89(7):2742-6. PubMed ID: 1532658 [TBL] [Abstract][Full Text] [Related]
16. Stable structure of thermophilic proton ATPase beta subunit. Kagawa Y; Ishizuka M; Saishu T; Nakao S J Biochem; 1986 Oct; 100(4):923-34. PubMed ID: 2880841 [TBL] [Abstract][Full Text] [Related]
17. Evolutionary links between FliH/YscL-like proteins from bacterial type III secretion systems and second-stalk components of the FoF1 and vacuolar ATPases. Pallen MJ; Bailey CM; Beatson SA Protein Sci; 2006 Apr; 15(4):935-41. PubMed ID: 16522800 [TBL] [Abstract][Full Text] [Related]
18. Recent developments on structural and functional aspects of the F1 sector of H+-linked ATPases. Vignais PV; Satre M Mol Cell Biochem; 1984; 60(1):33-71. PubMed ID: 6231469 [TBL] [Abstract][Full Text] [Related]
19. A conserved gene encoding the 57-kDa subunit of the yeast vacuolar H+-ATPase. Nelson H; Mandiyan S; Nelson N J Biol Chem; 1989 Jan; 264(3):1775-8. PubMed ID: 2521486 [TBL] [Abstract][Full Text] [Related]
20. Molecular cloning of genes encoding major two subunits of a eubacterial V-type ATPase from Thermus thermophilus. Tsutsumi S; Denda K; Yokoyama K; Oshima T; Date T; Yoshida M Biochim Biophys Acta; 1991 Dec; 1098(1):13-20. PubMed ID: 1836357 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]