These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 8581162)

  • 21. ATP synthase (H+-ATPase): results by combined biochemical and molecular biological approaches.
    Futai M; Noumi T; Maeda M
    Annu Rev Biochem; 1989; 58():111-36. PubMed ID: 2528322
    [No Abstract]   [Full Text] [Related]  

  • 22. The intriguing evolution of the "b" and "G" subunits in F-type and V-type ATPases: isolation of the vma-10 gene from Neurospora crassa.
    Hunt IE; Bowman BJ
    J Bioenerg Biomembr; 1997 Dec; 29(6):533-40. PubMed ID: 9559854
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolution of the F0F1 ATP synthase complex in light of the patchy distribution of different bioenergetic pathways across prokaryotes.
    Koumandou VL; Kossida S
    PLoS Comput Biol; 2014 Sep; 10(9):e1003821. PubMed ID: 25188293
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure and function of the ATPase-ATP synthase complex of mitochondria as compared to chloroplasts and bacteria.
    Godinot C; Di Pietro A
    Biochimie; 1986 Mar; 68(3):367-74. PubMed ID: 2874838
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular cloning of cDNA encoding the C subunit of H(+)-ATPase from bovine chromaffin granules.
    Nelson H; Mandiyan S; Noumi T; Moriyama Y; Miedel MC; Nelson N
    J Biol Chem; 1990 Nov; 265(33):20390-3. PubMed ID: 2147024
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of the stalk in the coupling mechanism of F1F0-ATPases.
    Walker JE; Collinson IR
    FEBS Lett; 1994 Jun; 346(1):39-43. PubMed ID: 8206156
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evolution of the chaperonin families (Hsp60, Hsp10 and Tcp-1) of proteins and the origin of eukaryotic cells.
    Gupta RS
    Mol Microbiol; 1995 Jan; 15(1):1-11. PubMed ID: 7752884
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stability of structures of the epsilon subunit and terminator of thermophilic ATPase.
    Saishu T; Nojima H; Kagawa Y
    Biochim Biophys Acta; 1986 Jun; 867(3):97-106. PubMed ID: 2872924
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The chloroplast CF0I subunit can replace the b-subunit of the F0F1-ATPase in a mutant strain of Escherichia coli K12.
    Schmidt G; Rodgers AJ; Howitt SM; Munn AL; Hudson GS; Holten TA; Whitfeld PR; Bottomley W; Gibson F; Cox GB
    Biochim Biophys Acta; 1990 Feb; 1015(2):195-9. PubMed ID: 2137012
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The ATP synthase of Halobacterium salinarium (halobium) is an archaebacterial type as revealed from the amino acid sequences of its two major subunits.
    Ihara K; Mukohata Y
    Arch Biochem Biophys; 1991 Apr; 286(1):111-6. PubMed ID: 1832829
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular cloning of the beta-subunit of a possible non-F0F1 type ATP synthase from the acidothermophilic archaebacterium, Sulfolobus acidocaldarius.
    Denda K; Konishi J; Oshima T; Date T; Yoshida M
    J Biol Chem; 1988 Nov; 263(33):17251-4. PubMed ID: 2903160
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ATP synthases: insights into their motor functions from sequence and structural analyses.
    Hong S; Pedersen PL
    J Bioenerg Biomembr; 2003 Apr; 35(2):95-120. PubMed ID: 12887009
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plant mitochondrial F0F1 ATP synthase. Identification of the individual subunits and properties of the purified spinach leaf mitochondrial ATP synthase.
    Hamasur B; Glaser E
    Eur J Biochem; 1992 Apr; 205(1):409-16. PubMed ID: 1313368
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystal structure of the epsilon subunit of the proton-translocating ATP synthase from Escherichia coli.
    Uhlin U; Cox GB; Guss JM
    Structure; 1997 Sep; 5(9):1219-30. PubMed ID: 9331422
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The F0F1-type ATP synthases of bacteria: structure and function of the F0 complex.
    Deckers-Hebestreit G; Altendorf K
    Annu Rev Microbiol; 1996; 50():791-824. PubMed ID: 8905099
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isolation and characterization of the mitochondrial ATP synthase from Chlamydomonas reinhardtii. cDNA sequence and deduced protein sequence of the alpha subunit.
    Nurani G; Franzén LG
    Plant Mol Biol; 1996 Sep; 31(6):1105-16. PubMed ID: 8914527
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The nuclear-encoded polypeptide Cfo-II from spinach is a real, ninth subunit of chloroplast ATP synthase.
    Herrmann RG; Steppuhn J; Herrmann GS; Nelson N
    FEBS Lett; 1993 Jul; 326(1-3):192-8. PubMed ID: 8325369
    [TBL] [Abstract][Full Text] [Related]  

  • 38. F-and V-ATPases in the genus Thermus and related species.
    Radax C; Sigurdsson O; Hreggvidsson GO; Aichinger N; Gruber C; Kristjansson JK; Stan-Lotter H
    Syst Appl Microbiol; 1998 Mar; 21(1):12-22. PubMed ID: 9741106
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of short conserved segments of alpha- and beta-subunits that link F(1)-ATPase catalytic and noncatalytic sites.
    Malyan AN
    Biochemistry (Mosc); 2010 Jan; 75(1):81-4. PubMed ID: 20331427
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Subunit II (b') and not subunit I (b) of photosynthetic ATP synthases is equivalent to subunit b of the ATP synthases from nonphotosynthetic eubacteria. Evidence for a new assignment of b-type F0 subunits.
    Tiburzy HJ; Berzborn RJ
    Z Naturforsch C J Biosci; 1997; 52(11-12):789-98. PubMed ID: 9463936
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.