These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 8581324)

  • 1. Phytotoxic effect of deoxynivalenol and gibberella ear rot resistance of corn.
    Cossette F; Miller JD
    Nat Toxins; 1995; 3(5):383-8. PubMed ID: 8581324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pre-harvest accumulation of deoxynivalenol in sweet corn ears inoculated with Fusarium graminearum.
    Reid LM; Zhu X; Savard ME; Sinha RC; Vigier B
    Food Addit Contam; 2000 Aug; 17(8):689-701. PubMed ID: 11027030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mapping of QTLs for resistance to Gibberella ear rot, in corn, caused by Fusarium graminearum.
    Ali ML; Taylor JH; Jie L; Sun G; William M; Kasha KJ; Reid LM; Pauls KP
    Genome; 2005 Jun; 48(3):521-33. PubMed ID: 16121248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel Insights into the Inheritance of Gibberella Ear Rot (GER), Deoxynivalenol (DON) Accumulation, and DON Production.
    Mesterhazy A; Szabó B; Szél S; Nagy Z; Berényi A; Tóth B
    Toxins (Basel); 2022 Aug; 14(9):. PubMed ID: 36136521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gibberella ear rot of maize (Zea mays) in Nepal: distribution of the mycotoxins nivalenol and deoxynivalenol in naturally and experimentally infected maize.
    Desjardins AE; Busman M; Manandhar G; Jarosz AM; Manandhar HK; Proctor RH
    J Agric Food Chem; 2008 Jul; 56(13):5428-36. PubMed ID: 18533662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Larval western bean cutworm feeding damage encourages the development of Gibberella ear rot on field corn.
    Parker NS; Anderson NR; Richmond DS; Long EY; Wise KA; Krupke CH
    Pest Manag Sci; 2017 Mar; 73(3):546-553. PubMed ID: 27158946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A guanylyl cyclase-like gene is associated with Gibberella ear rot resistance in maize (Zea mays L.).
    Yuan J; Liakat Ali M; Taylor J; Liu J; Sun G; Liu W; Masilimany P; Gulati-Sakhuja A; Pauls KP
    Theor Appl Genet; 2008 Feb; 116(4):465-79. PubMed ID: 18074115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Presence and Correlation of
    Reed H; Mueller B; Groves CL; Smith DL
    Plant Dis; 2022 Jan; 106(1):87-92. PubMed ID: 34491093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chlorogenic acid and maize ear rot resistance: a dynamic study investigating Fusarium graminearum development, deoxynivalenol production, and phenolic acid accumulation.
    Atanasova-Penichon V; Pons S; Pinson-Gadais L; Picot A; Marchegay G; Bonnin-Verdal MN; Ducos C; Barreau C; Roucolle J; Sehabiague P; Carolo P; Richard-Forget F
    Mol Plant Microbe Interact; 2012 Dec; 25(12):1605-16. PubMed ID: 23035912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability of Hybrid Maize Reaction to Gibberella Ear Rot and Deoxynivalenol Contamination of Grain.
    Lana FD; Paul PA; Minyo R; Thomison P; Madden LV
    Phytopathology; 2020 Dec; 110(12):1908-1922. PubMed ID: 32689899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Susceptibility of Maize to Stalk Rot Caused by Fusarium graminearum Deoxynivalenol and Zearalenone Mutants.
    Quesada-Ocampo LM; Al-Haddad J; Scruggs AC; Buell CR; Trail F
    Phytopathology; 2016 Aug; 106(8):920-7. PubMed ID: 27050573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome profiling of two maize inbreds with distinct responses to Gibberella ear rot disease to identify candidate resistance genes.
    Kebede AZ; Johnston A; Schneiderman D; Bosnich W; Harris LJ
    BMC Genomics; 2018 Feb; 19(1):131. PubMed ID: 29426290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fungal biotransformation of chlorogenic and caffeic acids by Fusarium graminearum: New insights in the contribution of phenolic acids to resistance to deoxynivalenol accumulation in cereals.
    Gauthier L; Bonnin-Verdal MN; Marchegay G; Pinson-Gadais L; Ducos C; Richard-Forget F; Atanasova-Penichon V
    Int J Food Microbiol; 2016 Mar; 221():61-68. PubMed ID: 26812586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic profiling of two maize inbreds during early gibberella ear rot infection.
    Mohammadi M; Anoop V; Gleddie S; Harris LJ
    Proteomics; 2011 Sep; 11(18):3675-84. PubMed ID: 21751381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of Gibberella Ear Rot on Grain Quality and Yield Components in Maize as Influenced by Hybrid Reaction.
    Lana FD; Madden LV; Carvalho CP; Paul PA
    Plant Dis; 2022 Dec; 106(12):3061-3075. PubMed ID: 35536201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome analysis of maize resistance to Fusarium graminearum.
    Liu Y; Guo Y; Ma C; Zhang D; Wang C; Yang Q
    BMC Genomics; 2016 Jun; 17():477. PubMed ID: 27352627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of Gibberella Ear Rot on Processing Sweet Corn Hybrids Over an Extended Period of Harvest.
    Nordby JN; Pataky JK; White DG
    Plant Dis; 2007 Feb; 91(2):171-175. PubMed ID: 30781000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fusarium graminearum Isolates from Wheat and Maize in New York Show Similar Range of Aggressiveness and Toxigenicity in Cross-Species Pathogenicity Tests.
    Kuhnem PR; Del Ponte EM; Dong Y; Bergstrom GC
    Phytopathology; 2015 Apr; 105(4):441-8. PubMed ID: 25338173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic diversity and trichothecene chemotypes of the Fusarium graminearum clade isolated from maize in Nepal and identification of a putative new lineage.
    Desjardins AE; Proctor RH
    Fungal Biol; 2011 Jan; 115(1):38-48. PubMed ID: 21215953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fusarium diseases of maize associated with mycotoxin contamination of agricultural products intended to be used for food and feed.
    Oldenburg E; Höppner F; Ellner F; Weinert J
    Mycotoxin Res; 2017 Aug; 33(3):167-182. PubMed ID: 28455556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.