These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 8582278)

  • 21. Evolutionary conservation of mechanisms upstream of asymmetric Nodal expression: reconciling chick and Xenopus.
    Levin M; Mercola M
    Dev Genet; 1998; 23(3):185-93. PubMed ID: 9842713
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sebox regulates mesoderm formation in early amphibian embryos.
    Chen G; Tan R; Tao Q
    Dev Dyn; 2015 Nov; 244(11):1415-26. PubMed ID: 26285158
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A nodal-related gene defines a physical and functional domain within the Spemann organizer.
    Smith WC; McKendry R; Ribisi S; Harland RM
    Cell; 1995 Jul; 82(1):37-46. PubMed ID: 7606783
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The orphan receptor ALK7 and the Activin receptor ALK4 mediate signaling by Nodal proteins during vertebrate development.
    Reissmann E; Jörnvall H; Blokzijl A; Andersson O; Chang C; Minchiotti G; Persico MG; Ibáñez CF; Brivanlou AH
    Genes Dev; 2001 Aug; 15(15):2010-22. PubMed ID: 11485994
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expression cloning of Xenopus Os4, an evolutionarily conserved gene, which induces mesoderm and dorsal axis.
    Zohn IE; Brivanlou AH
    Dev Biol; 2001 Nov; 239(1):118-31. PubMed ID: 11784023
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Competition between noggin and bone morphogenetic protein 4 activities may regulate dorsalization during Xenopus development.
    Re'em-Kalma Y; Lamb T; Frank D
    Proc Natl Acad Sci U S A; 1995 Dec; 92(26):12141-5. PubMed ID: 8618860
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bone morphogenetic protein 4: a ventralizing factor in early Xenopus development.
    Dale L; Howes G; Price BM; Smith JC
    Development; 1992 Jun; 115(2):573-85. PubMed ID: 1425340
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expression cloning of a Xenopus T-related gene (Xombi) involved in mesodermal patterning and blastopore lip formation.
    Lustig KD; Kroll KL; Sun EE; Kirschner MW
    Development; 1996 Dec; 122(12):4001-12. PubMed ID: 9012520
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wnt8 is required in lateral mesendodermal precursors for neural posteriorization in vivo.
    Erter CE; Wilm TP; Basler N; Wright CV; Solnica-Krezel L
    Development; 2001 Sep; 128(18):3571-83. PubMed ID: 11566861
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of the response to Nodal-mediated mesoderm induction by Xrel3.
    Kennedy MW; Green KA; Ford RL; Andrews PG; Paterno GD; Gillespie LL; Kao KR
    Dev Biol; 2007 Nov; 311(2):383-95. PubMed ID: 17920056
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nodal is a novel TGF-beta-like gene expressed in the mouse node during gastrulation.
    Zhou X; Sasaki H; Lowe L; Hogan BL; Kuehn MR
    Nature; 1993 Feb; 361(6412):543-7. PubMed ID: 8429908
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mesoderm induction in Xenopus is a zygotic event regulated by maternal VegT via TGFbeta growth factors.
    Kofron M; Demel T; Xanthos J; Lohr J; Sun B; Sive H; Osada S; Wright C; Wylie C; Heasman J
    Development; 1999 Dec; 126(24):5759-70. PubMed ID: 10572051
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The patterning and functioning of protrusive activity during convergence and extension of the Xenopus organiser.
    Keller R; Shih J; Domingo C
    Dev Suppl; 1992; ():81-91. PubMed ID: 1299372
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Zebrafish nodal-related 2 encodes an early mesendodermal inducer signaling from the extraembryonic yolk syncytial layer.
    Erter CE; Solnica-Krezel L; Wright CV
    Dev Biol; 1998 Dec; 204(2):361-72. PubMed ID: 9882476
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nodal signaling and vertebrate germ layer formation.
    Weng W; Stemple DL
    Birth Defects Res C Embryo Today; 2003 Nov; 69(4):325-32. PubMed ID: 14745973
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Blastomere derivation and domains of gene expression in the Spemann Organizer of Xenopus laevis.
    Vodicka MA; Gerhart JC
    Development; 1995 Nov; 121(11):3505-18. PubMed ID: 8582265
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Relationships between mesoderm induction and the embryonic axes in chick and frog embryos.
    Stern CD; Hatada Y; Selleck MA; Storey KG
    Dev Suppl; 1992; ():151-6. PubMed ID: 1299361
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ventral mesodermal patterning in Xenopus embryos: expression patterns and activities of BMP-2 and BMP-4.
    Hemmati-Brivanlou A; Thomsen GH
    Dev Genet; 1995; 17(1):78-89. PubMed ID: 7554498
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anterior neurectoderm is progressively induced during gastrulation: the role of the Xenopus homeobox gene orthodenticle.
    Blitz IL; Cho KW
    Development; 1995 Apr; 121(4):993-1004. PubMed ID: 7743941
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Boundaries and functional domains in the animal/vegetal axis of Xenopus gastrula mesoderm.
    Kumano G; Ezal C; Smith WC
    Dev Biol; 2001 Aug; 236(2):465-77. PubMed ID: 11476585
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.