These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 8582286)

  • 1. Target-independent diversification and target-specific projection of chemically defined retinal ganglion cell subsets.
    Yamagata M; Sanes JR
    Development; 1995 Nov; 121(11):3763-76. PubMed ID: 8582286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Labeled lines in the retinotectal system: markers for retinorecipient sublaminae and the retinal ganglion cell subsets that innervate them.
    Yamagata M; Weiner JA; Dulac C; Roth KA; Sanes JR
    Mol Cell Neurosci; 2006 Nov; 33(3):296-310. PubMed ID: 16978878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laminar restriction of retinal ganglion cell dendrites and axons: subtype-specific developmental patterns revealed with transgenic markers.
    Kim IJ; Zhang Y; Meister M; Sanes JR
    J Neurosci; 2010 Jan; 30(4):1452-62. PubMed ID: 20107072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lamina-specific expression of adhesion molecules in developing chick optic tectum.
    Yamagata M; Herman JP; Sanes JR
    J Neurosci; 1995 Jun; 15(6):4556-71. PubMed ID: 7790923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-autonomous TrkB signaling in presynaptic retinal ganglion cells mediates axon arbor growth and synapse maturation during the establishment of retinotectal synaptic connectivity.
    Marshak S; Nikolakopoulou AM; Dirks R; Martens GJ; Cohen-Cory S
    J Neurosci; 2007 Mar; 27(10):2444-56. PubMed ID: 17344382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local and target-derived brain-derived neurotrophic factor exert opposing effects on the dendritic arborization of retinal ganglion cells in vivo.
    Lom B; Cogen J; Sanchez AL; Vu T; Cohen-Cory S
    J Neurosci; 2002 Sep; 22(17):7639-49. PubMed ID: 12196587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DSCAM differentially modulates pre- and postsynaptic structural and functional central connectivity during visual system wiring.
    Santos RA; Fuertes AJC; Short G; Donohue KC; Shao H; Quintanilla J; Malakzadeh P; Cohen-Cory S
    Neural Dev; 2018 Sep; 13(1):22. PubMed ID: 30219101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of substance P-like immunoreactive retinal ganglion cells and their pattern of termination in the optic tectum of chick (Gallus gallus).
    Ehrlich D; Keyser KT; Karten HJ
    J Comp Neurol; 1987 Dec; 266(2):220-33. PubMed ID: 2449469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lamina-specific cues guide outgrowth and arborization of retinal axons in the optic tectum.
    Yamagata M; Sanes JR
    Development; 1995 Jan; 121(1):189-200. PubMed ID: 7867499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereotyped axonal arbors of retinal ganglion cell subsets in the mouse superior colliculus.
    Hong YK; Kim IJ; Sanes JR
    J Comp Neurol; 2011 Jun; 519(9):1691-711. PubMed ID: 21452242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of neurotrophin-3 (NT-3) and anterograde axonal transport of endogenous NT-3 by retinal ganglion cells in chick embryos.
    von Bartheld CS; Butowt R
    J Neurosci; 2000 Jan; 20(2):736-48. PubMed ID: 10632603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graded and lamina-specific distributions of ligands of EphB receptor tyrosine kinases in the developing retinotectal system.
    Braisted JE; McLaughlin T; Wang HU; Friedman GC; Anderson DJ; O'leary DD
    Dev Biol; 1997 Nov; 191(1):14-28. PubMed ID: 9356168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth hormone and its receptor in projection neurons of the chick visual system: retinofugal and tectobulbar tracts.
    Baudet ML; Rattray D; Harvey S
    Neuroscience; 2007 Aug; 148(1):151-63. PubMed ID: 17618059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific expression of ezrin, a cytoskeletal-membrane linker protein, in a subset of chick retinotectal and sensory projections.
    Takahashi M; Yamagata M; Noda M
    Eur J Neurosci; 1999 Feb; 11(2):545-58. PubMed ID: 10051754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for shifting connections during development of the chick retinotectal projection.
    McLoon SC
    J Neurosci; 1985 Oct; 5(10):2570-80. PubMed ID: 2995601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial arrangement of radial glia and ingrowing retinal axons in the chick optic tectum during development.
    Vanselow J; Thanos S; Godement P; Henke-Fahle S; Bonhoeffer F
    Brain Res Dev Brain Res; 1989 Jan; 45(1):15-27. PubMed ID: 2917409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BDNF increases synapse density in dendrites of developing tectal neurons in vivo.
    Sanchez AL; Matthews BJ; Meynard MM; Hu B; Javed S; Cohen Cory S
    Development; 2006 Jul; 133(13):2477-86. PubMed ID: 16728478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Projection of the nucleus pretectalis to a retinorecipient tectal layer in the pigeon (Columba livia).
    Gamlin PD; Reiner A; Keyser KT; Brecha N; Karten HJ
    J Comp Neurol; 1996 May; 368(3):424-38. PubMed ID: 8725349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurobiology of the regenerating retina and its functional reconnection with the brain by means of peripheral nerve transplants in adult rats.
    Thanos S
    Surv Ophthalmol; 1997 Nov; 42 Suppl 1():S5-26. PubMed ID: 9603287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precise lamination of retinal axons generates multiple parallel input pathways in the tectum.
    Robles E; Filosa A; Baier H
    J Neurosci; 2013 Mar; 33(11):5027-39. PubMed ID: 23486973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.