BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 8582617)

  • 1. Conditional hitchhiking of mitochondrial DNA: frequency shifts of Drosophila melanogaster mtDNA variants depend on nuclear genetic background.
    Kilpatrick ST; Rand DM
    Genetics; 1995 Nov; 141(3):1113-24. PubMed ID: 8582617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial-Nuclear Interactions Mediate Sex-Specific Transcriptional Profiles in Drosophila.
    Mossman JA; Tross JG; Li N; Wu Z; Rand DM
    Genetics; 2016 Oct; 204(2):613-630. PubMed ID: 27558138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear-mitochondrial epistasis and drosophila aging: introgression of Drosophila simulans mtDNA modifies longevity in D. melanogaster nuclear backgrounds.
    Rand DM; Fry A; Sheldahl L
    Genetics; 2006 Jan; 172(1):329-41. PubMed ID: 16219776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for non-neutrality of mitochondrial DNA haplotypes in Drosophila pseudoobscura.
    MacRae AF; Anderson WW
    Genetics; 1988 Oct; 120(2):485-94. PubMed ID: 3197957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial DNA Fitness Depends on Nuclear Genetic Background in
    Mossman JA; Ge JY; Navarro F; Rand DM
    G3 (Bethesda); 2019 Apr; 9(4):1175-1188. PubMed ID: 30745378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competition between mitochondrial haplotypes in distinct nuclear genetic environments: Drosophila pseudoobscura vs. D. persimilis.
    Hutter CM; Rand DM
    Genetics; 1995 Jun; 140(2):537-48. PubMed ID: 7498735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial DNA haplotype frequencies in natural and experimental populations of Drosophila subobscura.
    García-Martínez J; Castro JA; Ramón M; Latorre A; Moya A
    Genetics; 1998 Jul; 149(3):1377-82. PubMed ID: 9649527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear background affects frequency dynamics of mitochondrial DNA variants in Drosophila simulans.
    Nigro L
    Heredity (Edinb); 1994 Jun; 72 ( Pt 6)():582-6. PubMed ID: 8056616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial DNA variation and genetic structure in populations of Drosophila melanogaster.
    Hale LR; Singh RS
    Mol Biol Evol; 1987 Nov; 4(6):622-37. PubMed ID: 2895414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequencies of mitochondrial DNA haplotypes in laboratory cage populations of the mosquito, Aedes albopictus.
    Kambhampati S; Rai KS; Verleye DM
    Genetics; 1992 Sep; 132(1):205-9. PubMed ID: 1398054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coevolution of Drosophila melanogaster mtDNA and Wolbachia genotypes.
    Ilinsky Y
    PLoS One; 2013; 8(1):e54373. PubMed ID: 23349865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aging, mating, and the evolution of mtDNA heteroplasmy in Drosophila melanogaster.
    Kann LM; Rosenblum EB; Rand DM
    Proc Natl Acad Sci U S A; 1998 Mar; 95(5):2372-7. PubMed ID: 9482892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial genomic variation drives differential nuclear gene expression in discrete regions of Drosophila gene and protein interaction networks.
    Mossman JA; Biancani LM; Rand DM
    BMC Genomics; 2019 Sep; 20(1):691. PubMed ID: 31477008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comprehensive study of genic variation in natural populations of Drosophila melanogaster. IV. Mitochondrial DNA variation and the role of history vs. selection in the genetic structure of geographic populations.
    Hale LR; Singh RS
    Genetics; 1991 Sep; 129(1):103-17. PubMed ID: 1682210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extensive paternal mtDNA leakage in natural populations of Drosophila melanogaster.
    Nunes MD; Dolezal M; Schlötterer C
    Mol Ecol; 2013 Apr; 22(8):2106-17. PubMed ID: 23452233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial DNA evolution in experimental populations of Drosophila subobscura.
    Fos M; Domínguez MA; Latorre A; Moya A
    Proc Natl Acad Sci U S A; 1990 Jun; 87(11):4198-201. PubMed ID: 2349229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Context-dependent effects of Y chromosome and mitochondrial haplotype on male locomotive activity in Drosophila melanogaster.
    Dean R; Lemos B; Dowling DK
    J Evol Biol; 2015 Oct; 28(10):1861-71. PubMed ID: 26201506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variation in mitochondrial genotype has substantial lifespan effects which may be modulated by nuclear background.
    Clancy DJ
    Aging Cell; 2008 Dec; 7(6):795-804. PubMed ID: 18727704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterns of linkage disequilibrium and long range hitchhiking in evolving experimental Drosophila melanogaster populations.
    Franssen SU; Nolte V; Tobler R; Schlötterer C
    Mol Biol Evol; 2015 Feb; 32(2):495-509. PubMed ID: 25415966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viability of cytochrome c genotypes depends on cytoplasmic backgrounds in Tigriopus californicus.
    Willett CS; Burton RS
    Evolution; 2001 Aug; 55(8):1592-9. PubMed ID: 11580018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.