These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 8582629)

  • 1. The effects of trinucleotide repeats found in human inherited disorders on palindrome inviability in Escherichia coli suggest hairpin folding preferences in vivo.
    Darlow JM; Leach DR
    Genetics; 1995 Nov; 141(3):825-32. PubMed ID: 8582629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for two preferred hairpin folding patterns in d(CGG).d(CCG) repeat tracts in vivo.
    Darlow JM; Leach DR
    J Mol Biol; 1998 Jan; 275(1):17-23. PubMed ID: 9451435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Base stacking and even/odd behavior of hairpin loops in DNA triplet repeat slippage and expansion with DNA polymerase.
    Hartenstine MJ; Goodman MF; Petruska J
    J Biol Chem; 2000 Jun; 275(24):18382-90. PubMed ID: 10849445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-base DNA hairpin-loop structures in vivo.
    Davison A; Leach DR
    Nucleic Acids Res; 1994 Oct; 22(21):4361-3. PubMed ID: 7971265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trinucleotide repeats associated with human disease.
    Mitas M
    Nucleic Acids Res; 1997 Jun; 25(12):2245-54. PubMed ID: 9171073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of nucleotide sequence changes on DNA secondary structure formation in Escherichia coli are consistent with cruciform extrusion in vivo.
    Davison A; Leach DR
    Genetics; 1994 Jun; 137(2):361-8. PubMed ID: 8070650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA palindromes adopt a methylation-resistant conformation that is consistent with DNA cruciform or hairpin formation in vivo.
    Allers T; Leach DR
    J Mol Biol; 1995 Sep; 252(1):70-85. PubMed ID: 7666435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Triplet repeats form secondary structures that escape DNA repair in yeast.
    Moore H; Greenwell PW; Liu CP; Arnheim N; Petes TD
    Proc Natl Acad Sci U S A; 1999 Feb; 96(4):1504-9. PubMed ID: 9990053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-triplet CGA repeats impede DNA replication in bacteriophage M13 in Escherichia coli.
    Pan X
    Microbiol Res; 2004; 159(2):97-102. PubMed ID: 15293942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of strand slippage in DNA polymerase expansions of CAG/CTG triplet repeats associated with neurodegenerative disease.
    Petruska J; Hartenstine MJ; Goodman MF
    J Biol Chem; 1998 Feb; 273(9):5204-10. PubMed ID: 9478975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability of intrastrand hairpin structures formed by the CAG/CTG class of DNA triplet repeats associated with neurological diseases.
    Petruska J; Arnheim N; Goodman MF
    Nucleic Acids Res; 1996 Jun; 24(11):1992-8. PubMed ID: 8668527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trinucleotide repeat instability: a hairpin curve at the crossroads of replication, recombination, and repair.
    Lenzmeier BA; Freudenreich CH
    Cytogenet Genome Res; 2003; 100(1-4):7-24. PubMed ID: 14526162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alternative structures in duplex DNA formed within the trinucleotide repeats of the myotonic dystrophy and fragile X loci.
    Pearson CE; Sinden RR
    Biochemistry; 1996 Apr; 35(15):5041-53. PubMed ID: 8664297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A small molecule regulates hairpin structures in d(CGG) trinucleotide repeats.
    Hagihara M; He H; Kimura M; Nakatani K
    Bioorg Med Chem Lett; 2012 Mar; 22(5):2000-3. PubMed ID: 22326165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA polymerase III proofreading mutants enhance the expansion and deletion of triplet repeat sequences in Escherichia coli.
    Iyer RR; Pluciennik A; Rosche WA; Sinden RR; Wells RD
    J Biol Chem; 2000 Jan; 275(3):2174-84. PubMed ID: 10636923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frustration Between Preferred States of Complementary Trinucleotide Repeat DNA Hairpins Anticorrelates with Expansion Disease Propensity.
    Xu P; Zhang J; Pan F; Mahn C; Roland C; Sagui C; Weninger K
    J Mol Biol; 2023 May; 435(10):168086. PubMed ID: 37024008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expansion and deletion of triplet repeat sequences in Escherichia coli occur on the leading strand of DNA replication.
    Iyer RR; Wells RD
    J Biol Chem; 1999 Feb; 274(6):3865-77. PubMed ID: 9920942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proofreading and secondary structure processing determine the orientation dependence of CAG x CTG trinucleotide repeat instability in Escherichia coli.
    Zahra R; Blackwood JK; Sales J; Leach DR
    Genetics; 2007 May; 176(1):27-41. PubMed ID: 17339223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hairpin formation during DNA synthesis primer realignment in vitro in triplet repeat sequences from human hereditary disease genes.
    Ohshima K; Wells RD
    J Biol Chem; 1997 Jul; 272(27):16798-806. PubMed ID: 9201985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viability of lambda phages carrying a perfect palindrome in the absence of recombination nucleases.
    Leach DR; Stahl FW
    Nature; 1983 Sep 29-Oct 5; 305(5933):448-51. PubMed ID: 6312322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.