BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 8583409)

  • 41. Branched-chain amino acids augment ammonia metabolism while attenuating protein breakdown during exercise.
    MacLean DA; Graham TE; Saltin B
    Am J Physiol; 1994 Dec; 267(6 Pt 1):E1010-22. PubMed ID: 7810616
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of exercise on concentrations of free amino acids in pools of type I and type II fibres in human muscle with reduced glycogen stores.
    Essén-Gustavsson B; Blomstrand E
    Acta Physiol Scand; 2002 Mar; 174(3):275-81. PubMed ID: 11906327
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The mechanism of ammonia production and the effect of mechanical work load on proteolysis and amino acid catabolism in isolated perfused rat heart.
    Takala T; Hiltunen JK; Hassinen IE
    Biochem J; 1980 Oct; 192(1):285-95. PubMed ID: 7305899
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Formation of inosine monophosphate (IMP) in human skeletal muscle during incremental dynamic exercise.
    Sahlin K; Broberg S; Ren JM
    Acta Physiol Scand; 1989 Jun; 136(2):193-8. PubMed ID: 2782092
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of infusing branched-chain amino acid during incremental exercise with reduced muscle glycogen content.
    Varnier M; Sarto P; Martines D; Lora L; Carmignoto F; Leese GP; Naccarato R
    Eur J Appl Physiol Occup Physiol; 1994; 69(1):26-31. PubMed ID: 7957152
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Exercise metabolism in human skeletal muscle exposed to prior eccentric exercise.
    Asp S; Daugaard JR; Kristiansen S; Kiens B; Richter EA
    J Physiol; 1998 May; 509 ( Pt 1)(Pt 1):305-13. PubMed ID: 9547403
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of branched-chain amino acid and carbohydrate supplementation on the exercise-induced change in plasma and muscle concentration of amino acids in human subjects.
    Blomstrand E; Andersson S; Hassmén P; Ekblom B; Newsholme EA
    Acta Physiol Scand; 1995 Feb; 153(2):87-96. PubMed ID: 7778464
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ammonia metabolism during exercise in man.
    Eriksson LS; Broberg S; Björkman O; Wahren J
    Clin Physiol; 1985 Aug; 5(4):325-36. PubMed ID: 4042572
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Muscle metabolic responses during 16 hours of intermittent heavy exercise.
    Green HJ; Duhamel TA; Holloway GP; Moule J; Ouyang J; Ranney D; Tupling AR
    Can J Physiol Pharmacol; 2007 Jun; 85(6):634-45. PubMed ID: 17823626
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Anaerobic energy production and O2 deficit-debt relationship during exhaustive exercise in humans.
    Bangsbo J; Gollnick PD; Graham TE; Juel C; Kiens B; Mizuno M; Saltin B
    J Physiol; 1990 Mar; 422():539-59. PubMed ID: 2352192
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of carbohydrate ingestion on ammonia metabolism during exercise in humans.
    Snow RJ; Carey MF; Stathis CG; Febbraio MA; Hargreaves M
    J Appl Physiol (1985); 2000 May; 88(5):1576-80. PubMed ID: 10797115
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Muscle lactate metabolism in recovery from intense exhaustive exercise: impact of light exercise.
    Bangsbo J; Graham T; Johansen L; Saltin B
    J Appl Physiol (1985); 1994 Oct; 77(4):1890-5. PubMed ID: 7836214
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Role of glycogen in control of glycolysis and IMP formation in human muscle during exercise.
    Spencer MK; Katz A
    Am J Physiol; 1991 Jun; 260(6 Pt 1):E859-64. PubMed ID: 2058662
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of ambient temperature on human skeletal muscle metabolism during fatiguing submaximal exercise.
    Parkin JM; Carey MF; Zhao S; Febbraio MA
    J Appl Physiol (1985); 1999 Mar; 86(3):902-8. PubMed ID: 10066703
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Responses of plasma glutamine, free tryptophan and branched-chain amino acids to prolonged exercise after a regime designed to reduce muscle glycogen.
    Zanker CL; Swaine IL; Castell LM; Newsholme EA
    Eur J Appl Physiol Occup Physiol; 1997; 75(6):543-8. PubMed ID: 9202952
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tricarboxylic acid cycle intermediate pool size: functional importance for oxidative metabolism in exercising human skeletal muscle.
    Bowtell JL; Marwood S; Bruce M; Constantin-Teodosiu D; Greenhaff PL
    Sports Med; 2007; 37(12):1071-88. PubMed ID: 18027994
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interleukin-6 release is higher across arm than leg muscles during whole-body exercise.
    Helge JW; Klein DK; Andersen TM; van Hall G; Calbet J; Boushel R; Saltin B
    Exp Physiol; 2011 Jun; 96(6):590-8. PubMed ID: 21421702
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Muscle ammonia metabolism during isometric contraction in humans.
    Katz A; Sahlin K; Henriksson J
    Am J Physiol; 1986 Jun; 250(6 Pt 1):C834-40. PubMed ID: 2872818
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Muscle glycogen synthesis in recovery from intense exercise in humans.
    Bangsbo J; Madsen K; Kiens B; Richter EA
    Am J Physiol; 1997 Aug; 273(2 Pt 1):E416-24. PubMed ID: 9277396
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Intramyocellular lipids form an important substrate source during moderate intensity exercise in endurance-trained males in a fasted state.
    van Loon LJ; Koopman R; Stegen JH; Wagenmakers AJ; Keizer HA; Saris WH
    J Physiol; 2003 Dec; 553(Pt 2):611-25. PubMed ID: 14514877
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.