These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 8583423)

  • 1. Modeling and measuring lateral line excitation patterns to changing dipole source locations.
    Coombs S; Hastings M; Finneran J
    J Comp Physiol A; 1996; 178(3):359-71. PubMed ID: 8583423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dipole source localization by the mottled sculpin. II. The role of lateral line excitation patterns.
    Coombs S; Conley RA
    J Comp Physiol A; 1997 Apr; 180(4):401-15. PubMed ID: 9106999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Source location encoding in the fish lateral line canal.
    Curcic-Blake B; van Netten SM
    J Exp Biol; 2006 Apr; 209(Pt 8):1548-59. PubMed ID: 16574811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transformation of peripheral inputs by the first-order lateral line brainstem nucleus.
    Coombs S; Mogdans J; Halstead M; Montgomery J
    J Comp Physiol A; 1998 May; 182(5):606-26. PubMed ID: 9579053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dipole source encoding and tracking by the goldfish auditory system.
    Coombs S; Fay RR; Elepfandt A
    J Exp Biol; 2010 Oct; 213(Pt 20):3536-47. PubMed ID: 20889834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nearfield detection of dipole sources by the goldfish (Carassius auratus) and the mottled sculpin (Cottus bairdi).
    Coombs S
    J Exp Biol; 1994 May; 190():109-29. PubMed ID: 7964388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lateral line stimulation patterns and prey orienting behavior in the Lake Michigan mottled sculpin (Cottus bairdi).
    Coombs S; Patton P
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Mar; 195(3):279-97. PubMed ID: 19137317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peripheral encoding of moving sources by the lateral line system of a sit-and-wait predator.
    J Exp Biol; 1998 Jan; 201 (Pt 1)():91-102. PubMed ID: 9390940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signal detection theory, lateral-line excitation patterns and prey capture behaviour of mottled sculpin.
    Coombs S
    Anim Behav; 1999 Aug; 58(2):421-430. PubMed ID: 10458893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional receptive fields of midbrain lateral line units in the goldfish, Carassius auratus.
    Voges K; Bleckmann H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Aug; 197(8):827-37. PubMed ID: 21505876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Responses of brainstem lateral line units to different stimulus source locations and vibration directions.
    Künzel S; Bleckmann H; Mogdans J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Jul; 197(7):773-87. PubMed ID: 21479569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dipole source localization by mottled sculpin. III. Orientation after site-specific, unilateral denervation of the lateral line system.
    Conley RA; Coombs S
    J Comp Physiol A; 1998 Sep; 183(3):335-44. PubMed ID: 9763703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dipole source localization by mottled sculpin. I. Approach strategies.
    Coombs S; Conley RA
    J Comp Physiol A; 1997 Apr; 180(4):387-99. PubMed ID: 9106998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brainstem lateral line responses to sinusoidal wave stimuli in the goldfish, Carassius auratus.
    Mogdans J; Kröther S
    Zoology (Jena); 2001; 104(2):153-66. PubMed ID: 16351828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Source level discrimination by the lateral line system of the mottled sculpin, Cottus bairdi.
    Coombs S; Fay RR
    J Acoust Soc Am; 1993 Apr; 93(4 Pt 1):2116-23. PubMed ID: 8473624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fibers innervating different parts of the lateral line system of an Antarctic notothenioid, Trematomus bernacchii, have similar frequency responses, despite large variation in the peripheral morphology.
    Coombs S; Montgomery J
    Brain Behav Evol; 1992; 40(5):217-33. PubMed ID: 1450897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distal versus proximal inhibitory shaping of feedback excitation in the electrosensory lateral line lobe: implications for sensory filtering.
    Berman NJ; Maler L
    J Neurophysiol; 1998 Dec; 80(6):3214-32. PubMed ID: 9862917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virtual-space receptive fields of single auditory nerve fibers.
    Poon PW; Brugge JF
    J Neurophysiol; 1993 Aug; 70(2):667-76. PubMed ID: 8410166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive responses of peripheral lateral line nerve fibres to sinusoidal wave stimuli.
    Mogdans J; Müller C; Frings M; Raap F
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 May; 203(5):329-342. PubMed ID: 28405761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Responses to dipole stimuli of anterior lateral line nerve fibres in goldfish, Carassius auratus, under still and running water conditions.
    Chagnaud BP; Hofmann MH; Mogdans J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Feb; 193(2):249-63. PubMed ID: 17075719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.