These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 8583503)
21. Schwann cell and olfactory ensheathing cell implantation for repair of the contused spinal cord. Oudega M Acta Physiol (Oxf); 2007 Feb; 189(2):181-9. PubMed ID: 17250568 [TBL] [Abstract][Full Text] [Related]
22. Axonal regeneration from injured dorsal roots into the spinal cord of adult rats. Chong MS; Woolf CJ; Haque NS; Anderson PN J Comp Neurol; 1999 Jul; 410(1):42-54. PubMed ID: 10397394 [TBL] [Abstract][Full Text] [Related]
23. Interaction of olfactory ensheathing cells with astrocytes may be the key to repair of tract injuries in the spinal cord: the 'pathway hypothesis'. Li Y; Li D; Raisman G J Neurocytol; 2005 Sep; 34(3-5):343-51. PubMed ID: 16841171 [TBL] [Abstract][Full Text] [Related]
24. Fibroblasts at the transection site of the injured goldfish optic nerve and their potential role during retinal axonal regeneration. Hirsch S; Cahill MA; Stuermer CA J Comp Neurol; 1995 Oct; 360(4):599-611. PubMed ID: 8801252 [TBL] [Abstract][Full Text] [Related]
25. Combined transplantation of neural stem cells and olfactory ensheathing cells for the repair of spinal cord injuries. Ao Q; Wang AJ; Chen GQ; Wang SJ; Zuo HC; Zhang XF Med Hypotheses; 2007; 69(6):1234-7. PubMed ID: 17548168 [TBL] [Abstract][Full Text] [Related]
26. Regenerating and sprouting axons differ in their requirements for growth after injury. Bernstein-Goral H; Diener PS; Bregman BS Exp Neurol; 1997 Nov; 148(1):51-72. PubMed ID: 9398450 [TBL] [Abstract][Full Text] [Related]
27. Repair of spinal cord injury by transplantation of olfactory ensheathing cells. Raisman G C R Biol; 2007; 330(6-7):557-60. PubMed ID: 17631453 [TBL] [Abstract][Full Text] [Related]
28. Reaction of spinal cord central canal cells to cord transection and their contribution to cord regeneration. Dervan AG; Roberts BL J Comp Neurol; 2003 Apr; 458(3):293-306. PubMed ID: 12619082 [TBL] [Abstract][Full Text] [Related]
29. The critical period for repair of CNS of neonatal opossum (Monodelphis domestica) in culture: correlation with development of glial cells, myelin and growth-inhibitory molecules. Varga ZM; Bandtlow CE; Erulkar SD; Schwab ME; Nicholls JG Eur J Neurosci; 1995 Oct; 7(10):2119-29. PubMed ID: 8542069 [TBL] [Abstract][Full Text] [Related]
30. Glial and axonal responses in areas of Wallerian degeneration of the corticospinal and dorsal ascending tracts after spinal cord dorsal funiculotomy. Wang L; Hu B; Wong WM; Lu P; Wu W; Xu XM Neuropathology; 2009 Jun; 29(3):230-41. PubMed ID: 18992013 [TBL] [Abstract][Full Text] [Related]
31. Repairing the injured spinal cord. Schwab ME Science; 2002 Feb; 295(5557):1029-31. PubMed ID: 11834824 [TBL] [Abstract][Full Text] [Related]
32. Astroglial-axonal interrelationship during regeneration of the optic nerve in goldfish. A freeze-fracture study. Wolburg H; Kästner R J Hirnforsch; 1984; 25(5):493-504. PubMed ID: 6501867 [TBL] [Abstract][Full Text] [Related]
33. Histone H1 improves regeneration after mouse spinal cord injury and changes shape and gene expression of cultured astrocytes. Kleene R; Loers G; Jakovcevski I; Mishra B; Schachner M Restor Neurol Neurosci; 2019; 37(4):291-313. PubMed ID: 31227672 [TBL] [Abstract][Full Text] [Related]
34. Activated macrophage/microglial cells can promote the regeneration of sensory axons into the injured spinal cord. Prewitt CM; Niesman IR; Kane CJ; Houlé JD Exp Neurol; 1997 Dec; 148(2):433-43. PubMed ID: 9417823 [TBL] [Abstract][Full Text] [Related]
35. Axonal regeneration through the fibrous scar in lesioned goldfish spinal cord. Takeda A; Atobe Y; Kadota T; Goris RC; Funakoshi K Neuroscience; 2015 Jan; 284():134-152. PubMed ID: 25290012 [TBL] [Abstract][Full Text] [Related]
36. Temporal progressive antigen expression in radial glia after contusive spinal cord injury in adult rats. Shibuya S; Miyamoto O; Itano T; Mori S; Norimatsu H Glia; 2003 Apr; 42(2):172-83. PubMed ID: 12655601 [TBL] [Abstract][Full Text] [Related]
37. Experimental spinal cord injury: Wallerian degeneration in the dorsal column is followed by revascularization, glial proliferation, and nerve regeneration. Zhang Z; Guth L Exp Neurol; 1997 Sep; 147(1):159-71. PubMed ID: 9294413 [TBL] [Abstract][Full Text] [Related]
38. Adult neurogenesis with 5-HT expression in lesioned goldfish spinal cord. Takeda A; Nakano M; Goris RC; Funakoshi K Neuroscience; 2008 Feb; 151(4):1132-41. PubMed ID: 18222047 [TBL] [Abstract][Full Text] [Related]
39. Microenvironmental changes during axonal regrowth in the optic nerve of the myelin deficient rat. Immunocytochemical and ultrastructural observations. Gocht A; Löhler J J Neurocytol; 1993 Jun; 22(6):461-79. PubMed ID: 7688415 [TBL] [Abstract][Full Text] [Related]
40. Development of an astrocytic response to lesions of the spinal cord in the North American opossum: an immunohistochemical study using anti-glial fibrillary acidic protein. Ghooray GT; Martin GF Glia; 1993 Sep; 9(1):10-7. PubMed ID: 8244527 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]