BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

46 related articles for article (PubMed ID: 8584300)

  • 1. Restoration of functional gait in paraplegic patients with the RGO-II hybrid orthosis. A multicenter controlled study. II: Physiological evaluation.
    Thoumie P; Le Claire G; Beillot J; Dassonville J; Chevalier T; Perrouin-Verbe B; Bedoiseau M; Busnel M; Cormerais A; Courtillon A
    Paraplegia; 1995 Nov; 33(11):654-9. PubMed ID: 8584300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals.
    Farris RJ; Quintero HA; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2011 Dec; 19(6):652-9. PubMed ID: 21968791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bilateral tibial fractures associated with powered exoskeleton use in complete spinal cord injury - a case report & literature review.
    Mahon J; Nolan L; O'Sullivan D; Curtin M; Devitt A; Murphy CG
    Spinal Cord Ser Cases; 2024 Apr; 10(1):22. PubMed ID: 38627367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Pathophysiology, Identification and Management of Fracture Risk, Sublesional Osteoporosis and Fracture among Adults with Spinal Cord Injury.
    Craven BC; Cirnigliaro CM; Carbone LD; Tsang P; Morse LR
    J Pers Med; 2023 Jun; 13(6):. PubMed ID: 37373955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effects of Lower Limb Orthoses on Health Aspects of the Spinal Cord Injury Patients: A Systematic Review Using International Classification of Functioning, Disability, and Health (ICF) as a Reference Framework.
    Fallahzadeh Abarghuei A; Karimi MT
    Med J Islam Repub Iran; 2022; 36():153. PubMed ID: 36654846
    [No Abstract]   [Full Text] [Related]  

  • 6. Osteopenia in a Mouse Model of Spinal Cord Injury: Effects of Age, Sex and Motor Function.
    Hook MA; Falck A; Dundumulla R; Terminel M; Cunningham R; Sefiani A; Callaway K; Gaddy D; Geoffroy CG
    Biology (Basel); 2022 Jan; 11(2):. PubMed ID: 35205056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Effects of Exercise and Activity-Based Physical Therapy on Bone after Spinal Cord Injury.
    Sutor TW; Kura J; Mattingly AJ; Otzel DM; Yarrow JF
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteoporosis after spinal cord injury: aetiology, effects and therapeutic approaches.
    Abdelrahman S; Ireland A; Winter EM; Purcell M; Coupaud S
    J Musculoskelet Neuronal Interact; 2021 Mar; 21(1):26-50. PubMed ID: 33657753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of FES-Rowing Exercise on the Time-Dependent Changes in Bone Microarchitecture After Spinal Cord Injury: A Cross-Sectional Investigation.
    Draghici AE; Taylor JA; Bouxsein ML; Shefelbine SJ
    JBMR Plus; 2019 Sep; 3(9):e10200. PubMed ID: 31667456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence-based prevention and treatment of osteoporosis after spinal cord injury: a systematic review.
    Soleyman-Jahi S; Yousefian A; Maheronnaghsh R; Shokraneh F; Zadegan SA; Soltani A; Hosseini SM; Vaccaro AR; Rahimi-Movaghar V
    Eur Spine J; 2018 Aug; 27(8):1798-1814. PubMed ID: 28497215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of orthosis options on walking parameters in spinal cord-injured patients: a literature review.
    Arazpour M; Samadian M; Ebrahimzadeh K; Ahmadi Bani M; Hutchins SW
    Spinal Cord; 2016 Jun; 54(6):412-22. PubMed ID: 26857271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of aging and electrical stimulation exercise on bone after spinal cord injury.
    Dolbow JD; Dolbow DR; Gorgey AS; Adler RA; Gater DR
    Aging Dis; 2013 Jun; 4(3):141-53. PubMed ID: 23730530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional walking ability of paraplegic patients: comparison of functional electrical stimulation versus mechanical orthoses.
    Karimi MT
    Eur J Orthop Surg Traumatol; 2013 Aug; 23(6):631-8. PubMed ID: 23412182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence-based evaluation of physiological effects of standing and walking in individuals with spinal cord injury.
    Karimi MT
    Iran J Med Sci; 2011 Dec; 36(4):242-53. PubMed ID: 23115408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A systematic review of the efficacy of gait rehabilitation strategies for spinal cord injury.
    Lam T; Eng JJ; Wolfe DL; Hsieh JT; Whittaker M;
    Top Spinal Cord Inj Rehabil; 2007; 13(1):32-57. PubMed ID: 22915835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prevention and Treatment of Bone Loss after a Spinal Cord Injury: A Systematic Review.
    Ashe MC; Craven C; Eng JJ; Krassioukov A;
    Top Spinal Cord Inj Rehabil; 2007; 13(1):123-145. PubMed ID: 22767990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the effects of body-weight-supported treadmill training and tilt-table standing on spasticity in individuals with chronic spinal cord injury.
    Adams MM; Hicks AL
    J Spinal Cord Med; 2011; 34(5):488-94. PubMed ID: 22118256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetric bone adaptations to soleus mechanical loading after spinal cord injury.
    Dudley-Javoroski S; Shields RK
    J Musculoskelet Neuronal Interact; 2008; 8(3):227-38. PubMed ID: 18799855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle and bone plasticity after spinal cord injury: review of adaptations to disuse and to electrical muscle stimulation.
    Dudley-Javoroski S; Shields RK
    J Rehabil Res Dev; 2008; 45(2):283-96. PubMed ID: 18566946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dose estimation and surveillance of mechanical loading interventions for bone loss after spinal cord injury.
    Dudley-Javoroski S; Shields RK
    Phys Ther; 2008 Mar; 88(3):387-96. PubMed ID: 18202080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.