BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 8584508)

  • 1. Role of Ca2+ on endotoxin-sensitivity by galactosamine challenge: lipid peroxide formation and hepatotoxicity in zymosan-primed mice.
    Sakaguchi S; Yokota K
    Pharmacol Toxicol; 1995 Aug; 77(2):81-6. PubMed ID: 8584508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of calcium ion on lipid peroxide formation in endotoxemic mice.
    Sakaguchi S; Ibata H; Yokota K
    Microbiol Immunol; 1989; 33(2):99-110. PubMed ID: 2541320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defense effects of a traditional Chinese medicine (sho-saiko-to) against metabolic disorders during endotoxemia; approached from the behavior of the calcium ion.
    Sakaguchi S; Tsutsumi E; Yokota K
    Biol Pharm Bull; 1994 Feb; 17(2):232-6. PubMed ID: 8205122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium behavior in endotoxin-poisoned mice: especially calcium accumulation in mitochondria.
    Sakaguchi S; Abe H; Sakaguchi O
    Microbiol Immunol; 1984; 28(5):517-27. PubMed ID: 6381970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of tumor necrosis factor-induced acute toxicity D-galactosamine challenge by polymyxin B, an anti-endotoxin.
    Sakaguchi S; Furusawa S; Yokota K; Takayanagi M; Takayanagi Y
    Int J Immunopharmacol; 2000 Nov; 22(11):935-42. PubMed ID: 11090702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of nitric oxide synthase inhibitors on lipid peroxide formation in liver caused by endotoxin challenge.
    Sakaguchi S; Furusawa S; Yokota K; Sasaki K; Takayanagi M; Takayanagi Y
    Pharmacol Toxicol; 2000 Apr; 86(4):162-8. PubMed ID: 10815749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of selenium in endotoxin-induced lipid peroxidation in the rats liver and in nitric oxide production in J774A.1 cells.
    Sakaguchi S; Iizuka Y; Furusawa S; Tanaka Y; Takayanagi M; Takayanagi Y
    Toxicol Lett; 2000 Dec; 118(1-2):69-77. PubMed ID: 11137311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decline in plasma membrane Ca(2+)-ATPase activity and increase in cytosolic-free Ca2+ concentration of endotoxin-injected mice livers.
    Sakaguchi S; Tsutsumi E; Yokota K
    Biol Pharm Bull; 1993 Aug; 16(8):808-10. PubMed ID: 8220330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aged mice are resistant to the hepatotoxic effects of endotoxin and galactosamine.
    Hornbrook KR; Kosanke SD; Rikans LE
    Exp Mol Pathol; 1993 Aug; 59(1):27-37. PubMed ID: 8262163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of calcium homeostasis leads to progressive phase of chlordecone-potentiated carbon tetrachloride hepatotoxicity.
    Kodavanti PR; Rao VC; Mehendale HM
    Toxicol Appl Pharmacol; 1993 Sep; 122(1):77-87. PubMed ID: 7690997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of lipid peroxidation and calcium in galactosamine induced toxicity in the rat liver.
    Seçkin S; Koçak-Toker N; Uysal M; Oz B
    Res Commun Chem Pathol Pharmacol; 1993 Apr; 80(1):117-20. PubMed ID: 8488337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycine and uridine prevent D-galactosamine hepatotoxicity in the rat: role of Kupffer cells.
    Stachlewitz RF; Seabra V; Bradford B; Bradham CA; Rusyn I; Germolec D; Thurman RG
    Hepatology; 1999 Mar; 29(3):737-45. PubMed ID: 10051475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumor necrosis factor is a terminal mediator in galactosamine/endotoxin-induced hepatitis in mice.
    Tiegs G; Wolter M; Wendel A
    Biochem Pharmacol; 1989 Feb; 38(4):627-31. PubMed ID: 2465008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of endotoxin-responsive macrophages in hepatic injury.
    Shiratori Y; Tanaka M; Hai K; Kawase T; Shirna S; Sugimoto T
    Hepatology; 1990 Feb; 11(2):183-92. PubMed ID: 2307397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The enhancing effect of tumour necrosis factor-alpha on oxidative stress in endotoxemia.
    Sakaguchi S; Furusawa S; Yokota K; Sasaki K; Takayanagi M; Takayanagi Y
    Pharmacol Toxicol; 1996 Nov; 79(5):259-65. PubMed ID: 8936560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel biologically active seleno-organic compound--VI. Protection by ebselen (PZ 51) against galactosamine/endotoxin-induced hepatitis in mice.
    Wendel A; Tiegs G
    Biochem Pharmacol; 1986 Jul; 35(13):2115-8. PubMed ID: 3729968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of hepatotoxicity by macrophages in the liver.
    Shiratori Y; Kawase T; Shiina S; Okano K; Sugimoto T; Teraoka H; Matano S; Matsumoto K; Kamii K
    Hepatology; 1988; 8(4):815-21. PubMed ID: 2839405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significance of endotoxaemia in experimental "galactosamine-hepatitis" in the rat.
    Grün M; Liehr H; Rasenack U
    Acta Hepatogastroenterol (Stuttg); 1977 Apr; 24(2):64-81. PubMed ID: 857560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. D-Galactosamine hepatotoxicity is associated with endotoxin sensitivity and mediated by lymphoreticular cells in mice.
    Chojkier M; Fierer J
    Gastroenterology; 1985 Jan; 88(1 Pt 1):115-21. PubMed ID: 3880554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of lead acetate on superoxide anion generation and its scavengers in mice given endotoxin.
    Sakaguchi O; Abe H; Sakaguchi S; Hsu CC
    Microbiol Immunol; 1982; 26(9):767-78. PubMed ID: 6296639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.